MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2 Structured version   Visualization version   GIF version

Theorem initoeu2 16489
Description: Initial objects are essentially unique, if A is an initial object, then so is every object that is isomorphic to A. Proposition 7.3 (2) in [Adamek] p. 102. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2.i (𝜑𝐴( ≃𝑐𝐶)𝐵)
Assertion
Ref Expression
initoeu2 (𝜑𝐵 ∈ (InitO‘𝐶))

Proof of Theorem initoeu2
Dummy variables 𝑎 𝑔 𝑏 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initoeu2.i . 2 (𝜑𝐴( ≃𝑐𝐶)𝐵)
2 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
3 ciclcl 16285 . . . 4 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶))
42, 3sylan 487 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶))
5 cicrcl 16286 . . . 4 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶))
62, 5sylan 487 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶))
72adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
8 cicsym 16287 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵( ≃𝑐𝐶)𝐴)
97, 8sylan 487 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵( ≃𝑐𝐶)𝐴)
10 eqid 2610 . . . . . . . . . . . 12 (Iso‘𝐶) = (Iso‘𝐶)
11 eqid 2610 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
12 simprr 792 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
13 simprl 790 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
1410, 11, 7, 12, 13cic 16282 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐𝐶)𝐴 ↔ ∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)))
15 initoeu1.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ (InitO‘𝐶))
16 eqid 2610 . . . . . . . . . . . . . . . . . 18 (Hom ‘𝐶) = (Hom ‘𝐶)
1711, 16, 2isinitoi 16476 . . . . . . . . . . . . . . . . 17 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)))
1815, 17mpdan 699 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)))
19 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑏 → (𝐴(Hom ‘𝐶)𝑎) = (𝐴(Hom ‘𝐶)𝑏))
2019eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
2120eubidv 2478 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑏 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
2221rspcva 3280 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))
23 nfv 1830 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)
24 nfv 1830 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)
25 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∈ (𝐴(Hom ‘𝐶)𝑏)))
2623, 24, 25cbveu 2493 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃! ∈ (𝐴(Hom ‘𝐶)𝑏))
27 euex 2482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃! ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃ ∈ (𝐴(Hom ‘𝐶)𝑏))
282adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
29 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (Base‘𝐶))
3029ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
31 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐴 ∈ (Base‘𝐶))
3231ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
3311, 16, 10, 28, 30, 32isohom 16259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝐵(Iso‘𝐶)𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴))
3433sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴))
35 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (comp‘𝐶) = (comp‘𝐶)
3628ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐶 ∈ Cat)
3730ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐵 ∈ (Base‘𝐶))
3832ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐴 ∈ (Base‘𝐶))
39 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝑏 ∈ (Base‘𝐶))
4039ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑏 ∈ (Base‘𝐶))
41 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴))
42 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → ∈ (𝐴(Hom ‘𝐶)𝑏))
4311, 16, 35, 36, 37, 38, 40, 41, 42catcocl 16169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))
44 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝜑)
4544ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝜑)
4645adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝜑)
47 df-3an 1033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ↔ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)))
4847biimpri 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)))
4948ad4antlr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)))
50 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴))
5150ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴))
5242adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → ∈ (𝐴(Hom ‘𝐶)𝑏))
53 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))
542, 15, 11, 16, 10, 35initoeu2lem2 16488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5546, 49, 51, 52, 53, 54syl113anc 1330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5643, 55mpdan 699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5756ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → ((𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
5834, 57mpand 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
5958ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
6059com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
6160ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6261com15 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6362expd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑏 ∈ (Base‘𝐶) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6463com24 93 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6564com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6665exlimiv 1845 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6727, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃! ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6826, 67sylbi 206 . . . . . . . . . . . . . . . . . . . . . . 23 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6968pm2.43i 50 . . . . . . . . . . . . . . . . . . . . . 22 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7069com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7170adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7222, 71mpd 15 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
7372ex 449 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7473com15 99 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7574adantld 482 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7618, 75mpd 15 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
7776imp 444 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
7877com12 32 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
7978exlimiv 1845 . . . . . . . . . . . 12 (∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
8079com12 32 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
8114, 80sylbid 229 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
8281adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → (𝐵( ≃𝑐𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
839, 82mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
8483an32s 842 . . . . . . 7 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
8584imp 444 . . . . . 6 ((((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑏 ∈ (Base‘𝐶)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))
8685ralrimiva 2949 . . . . 5 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))
872ad2antrr 758 . . . . . 6 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
88 simprr 792 . . . . . 6 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
8911, 16, 87, 88isinito 16473 . . . . 5 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
9086, 89mpbird 246 . . . 4 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (InitO‘𝐶))
9190ex 449 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (InitO‘𝐶)))
924, 6, 91mp2and 711 . 2 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (InitO‘𝐶))
931, 92mpdan 699 1 (𝜑𝐵 ∈ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  wral 2896  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Isociso 16229  𝑐 ccic 16278  InitOcinito 16461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-supp 7183  df-cat 16152  df-cid 16153  df-sect 16230  df-inv 16231  df-iso 16232  df-cic 16279  df-inito 16464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator