MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inisegn0 Structured version   Visualization version   GIF version

Theorem inisegn0 5416
Description: Nonemptyness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
inisegn0 (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)

Proof of Theorem inisegn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴 ∈ ran 𝐹𝐴 ∈ V)
2 snprc 4197 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 205 . . . . 5 𝐴 ∈ V → {𝐴} = ∅)
43imaeq2d 5385 . . . 4 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
5 ima0 5400 . . . 4 (𝐹 “ ∅) = ∅
64, 5syl6eq 2660 . . 3 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
76necon1ai 2809 . 2 ((𝐹 “ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2676 . . 3 (𝑎 = 𝐴 → (𝑎 ∈ ran 𝐹𝐴 ∈ ran 𝐹))
9 sneq 4135 . . . . 5 (𝑎 = 𝐴 → {𝑎} = {𝐴})
109imaeq2d 5385 . . . 4 (𝑎 = 𝐴 → (𝐹 “ {𝑎}) = (𝐹 “ {𝐴}))
1110neeq1d 2841 . . 3 (𝑎 = 𝐴 → ((𝐹 “ {𝑎}) ≠ ∅ ↔ (𝐹 “ {𝐴}) ≠ ∅))
12 abn0 3908 . . . 4 ({𝑏𝑏𝐹𝑎} ≠ ∅ ↔ ∃𝑏 𝑏𝐹𝑎)
13 vex 3176 . . . . . 6 𝑎 ∈ V
14 iniseg 5415 . . . . . 6 (𝑎 ∈ V → (𝐹 “ {𝑎}) = {𝑏𝑏𝐹𝑎})
1513, 14ax-mp 5 . . . . 5 (𝐹 “ {𝑎}) = {𝑏𝑏𝐹𝑎}
1615neeq1i 2846 . . . 4 ((𝐹 “ {𝑎}) ≠ ∅ ↔ {𝑏𝑏𝐹𝑎} ≠ ∅)
1713elrn 5287 . . . 4 (𝑎 ∈ ran 𝐹 ↔ ∃𝑏 𝑏𝐹𝑎)
1812, 16, 173bitr4ri 292 . . 3 (𝑎 ∈ ran 𝐹 ↔ (𝐹 “ {𝑎}) ≠ ∅)
198, 11, 18vtoclbg 3240 . 2 (𝐴 ∈ V → (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅))
201, 7, 19pm5.21nii 367 1 (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  Vcvv 3173  c0 3874  {csn 4125   class class class wbr 4583  ccnv 5037  ran crn 5039  cima 5041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051
This theorem is referenced by:  dnnumch3lem  36634  dnnumch3  36635  wessf1ornlem  38366
  Copyright terms: Public domain W3C validator