Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inintabd Structured version   Visualization version   GIF version

Theorem inintabd 36904
Description: Value of the intersection of class with the intersection of a non-empty class. (Contributed by RP, 13-Aug-2020.)
Hypothesis
Ref Expression
inintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
inintabd (𝜑 → (𝐴 {𝑥𝜓}) = {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem inintabd
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 inintabd.x . . . . . 6 (𝜑 → ∃𝑥𝜓)
2 pm5.5 350 . . . . . 6 (∃𝑥𝜓 → ((∃𝑥𝜓𝑢𝐴) ↔ 𝑢𝐴))
31, 2syl 17 . . . . 5 (𝜑 → ((∃𝑥𝜓𝑢𝐴) ↔ 𝑢𝐴))
43bicomd 212 . . . 4 (𝜑 → (𝑢𝐴 ↔ (∃𝑥𝜓𝑢𝐴)))
54anbi1d 737 . . 3 (𝜑 → ((𝑢𝐴 ∧ ∀𝑥(𝜓𝑢𝑥)) ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥))))
6 elinintab 36900 . . 3 (𝑢 ∈ (𝐴 {𝑥𝜓}) ↔ (𝑢𝐴 ∧ ∀𝑥(𝜓𝑢𝑥)))
7 vex 3176 . . . 4 𝑢 ∈ V
8 elinintrab 36902 . . . 4 (𝑢 ∈ V → (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥))))
97, 8ax-mp 5 . . 3 (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥)))
105, 6, 93bitr4g 302 . 2 (𝜑 → (𝑢 ∈ (𝐴 {𝑥𝜓}) ↔ 𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)}))
1110eqrdv 2608 1 (𝜑 → (𝐴 {𝑥𝜓}) = {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  {crab 2900  Vcvv 3173  cin 3539  𝒫 cpw 4108   cint 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-in 3547  df-ss 3554  df-pw 4110  df-int 4411
This theorem is referenced by:  xpinintabd  36905
  Copyright terms: Public domain W3C validator