Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inin | Structured version Visualization version GIF version |
Description: Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
inin | ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in13 3788 | . 2 ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐵 ∩ (𝐴 ∩ 𝐴)) | |
2 | inidm 3784 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | ineq2i 3773 | . 2 ⊢ (𝐵 ∩ (𝐴 ∩ 𝐴)) = (𝐵 ∩ 𝐴) |
4 | incom 3767 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
5 | 1, 3, 4 | 3eqtri 2636 | 1 ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∩ cin 3539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-in 3547 |
This theorem is referenced by: measinb2 29613 |
Copyright terms: Public domain | W3C validator |