MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infval Structured version   Visualization version   GIF version

Theorem infval 8275
Description: Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infval (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infval
StepHypRef Expression
1 df-inf 8232 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infexd.1 . . . . 5 (𝜑𝑅 Or 𝐴)
3 cnvso 5591 . . . . 5 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 207 . . . 4 (𝜑𝑅 Or 𝐴)
54supval2 8244 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
6 vex 3176 . . . . . . . . 9 𝑥 ∈ V
7 vex 3176 . . . . . . . . 9 𝑦 ∈ V
86, 7brcnv 5227 . . . . . . . 8 (𝑥𝑅𝑦𝑦𝑅𝑥)
98a1i 11 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦𝑦𝑅𝑥))
109notbid 307 . . . . . 6 (𝜑 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
1110ralbidv 2969 . . . . 5 (𝜑 → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
127, 6brcnv 5227 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
1312a1i 11 . . . . . . 7 (𝜑 → (𝑦𝑅𝑥𝑥𝑅𝑦))
14 vex 3176 . . . . . . . . . 10 𝑧 ∈ V
157, 14brcnv 5227 . . . . . . . . 9 (𝑦𝑅𝑧𝑧𝑅𝑦)
1615a1i 11 . . . . . . . 8 (𝜑 → (𝑦𝑅𝑧𝑧𝑅𝑦))
1716rexbidv 3034 . . . . . . 7 (𝜑 → (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝑦))
1813, 17imbi12d 333 . . . . . 6 (𝜑 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
1918ralbidv 2969 . . . . 5 (𝜑 → (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
2011, 19anbi12d 743 . . . 4 (𝜑 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
2120riotabidv 6513 . . 3 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
225, 21eqtrd 2644 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
231, 22syl5eq 2656 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wral 2896  wrex 2897   class class class wbr 4583   Or wor 4958  ccnv 5037  crio 6510  supcsup 8229  infcinf 8230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-po 4959  df-so 4960  df-cnv 5046  df-iota 5768  df-riota 6511  df-sup 8231  df-inf 8232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator