Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inftmrel Structured version   Visualization version   GIF version

Theorem inftmrel 29065
Description: The infinitesimal relation for a structure 𝑊. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypothesis
Ref Expression
inftm.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
inftmrel (𝑊𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵))

Proof of Theorem inftmrel
Dummy variables 𝑥 𝑤 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . . 3 (𝑊𝑉𝑊 ∈ V)
2 fveq2 6103 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 inftm.b . . . . . . . . 9 𝐵 = (Base‘𝑊)
42, 3syl6eqr 2662 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
54eleq2d 2673 . . . . . . 7 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥𝐵))
64eleq2d 2673 . . . . . . 7 (𝑤 = 𝑊 → (𝑦 ∈ (Base‘𝑤) ↔ 𝑦𝐵))
75, 6anbi12d 743 . . . . . 6 (𝑤 = 𝑊 → ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ↔ (𝑥𝐵𝑦𝐵)))
8 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
9 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑊 → (lt‘𝑤) = (lt‘𝑊))
10 eqidd 2611 . . . . . . . 8 (𝑤 = 𝑊𝑥 = 𝑥)
118, 9, 10breq123d 4597 . . . . . . 7 (𝑤 = 𝑊 → ((0g𝑤)(lt‘𝑤)𝑥 ↔ (0g𝑊)(lt‘𝑊)𝑥))
12 fveq2 6103 . . . . . . . . . 10 (𝑤 = 𝑊 → (.g𝑤) = (.g𝑊))
1312oveqd 6566 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑛(.g𝑤)𝑥) = (𝑛(.g𝑊)𝑥))
14 eqidd 2611 . . . . . . . . 9 (𝑤 = 𝑊𝑦 = 𝑦)
1513, 9, 14breq123d 4597 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦 ↔ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))
1615ralbidv 2969 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦 ↔ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))
1711, 16anbi12d 743 . . . . . 6 (𝑤 = 𝑊 → (((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦) ↔ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦)))
187, 17anbi12d 743 . . . . 5 (𝑤 = 𝑊 → (((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))))
1918opabbidv 4648 . . . 4 (𝑤 = 𝑊 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
20 df-inftm 29063 . . . 4 ⋘ = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))})
21 fvex 6113 . . . . . . 7 (Base‘𝑊) ∈ V
223, 21eqeltri 2684 . . . . . 6 𝐵 ∈ V
2322, 22xpex 6860 . . . . 5 (𝐵 × 𝐵) ∈ V
24 opabssxp 5116 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))} ⊆ (𝐵 × 𝐵)
2523, 24ssexi 4731 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))} ∈ V
2619, 20, 25fvmpt 6191 . . 3 (𝑊 ∈ V → (⋘‘𝑊) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
271, 26syl 17 . 2 (𝑊𝑉 → (⋘‘𝑊) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
2827, 24syl6eqss 3618 1 (𝑊𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540   class class class wbr 4583  {copab 4642   × cxp 5036  cfv 5804  (class class class)co 6549  cn 10897  Basecbs 15695  0gc0g 15923  ltcplt 16764  .gcmg 17363  cinftm 29061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-inftm 29063
This theorem is referenced by:  isarchi  29067
  Copyright terms: Public domain W3C validator