Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssr Structured version   Visualization version   GIF version

Theorem infpssr 9013
 Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infpssr ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)

Proof of Theorem infpssr
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 3991 . . 3 (𝑋𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
21adantr 480 . 2 ((𝑋𝐴𝑋𝐴) → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
3 eldif 3550 . . . 4 (𝑦 ∈ (𝐴𝑋) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝑋))
4 pssss 3664 . . . . . 6 (𝑋𝐴𝑋𝐴)
5 bren 7850 . . . . . . . 8 (𝑋𝐴 ↔ ∃𝑓 𝑓:𝑋1-1-onto𝐴)
6 simpr 476 . . . . . . . . . . . . 13 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑓:𝑋1-1-onto𝐴)
7 f1ofo 6057 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋onto𝐴)
8 forn 6031 . . . . . . . . . . . . 13 (𝑓:𝑋onto𝐴 → ran 𝑓 = 𝐴)
96, 7, 83syl 18 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ran 𝑓 = 𝐴)
10 vex 3176 . . . . . . . . . . . . 13 𝑓 ∈ V
1110rnex 6992 . . . . . . . . . . . 12 ran 𝑓 ∈ V
129, 11syl6eqelr 2697 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝐴 ∈ V)
13 simplr 788 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑋𝐴)
14 simpll 786 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑦 ∈ (𝐴𝑋))
15 eqid 2610 . . . . . . . . . . . 12 (rec(𝑓, 𝑦) ↾ ω) = (rec(𝑓, 𝑦) ↾ ω)
1613, 6, 14, 15infpssrlem5 9012 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → (𝐴 ∈ V → ω ≼ 𝐴))
1712, 16mpd 15 . . . . . . . . . 10 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ω ≼ 𝐴)
1817ex 449 . . . . . . . . 9 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
1918exlimdv 1848 . . . . . . . 8 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (∃𝑓 𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
205, 19syl5bi 231 . . . . . . 7 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑋𝐴 → ω ≼ 𝐴))
2120ex 449 . . . . . 6 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
224, 21syl5 33 . . . . 5 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
2322impd 446 . . . 4 (𝑦 ∈ (𝐴𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
243, 23sylbir 224 . . 3 ((𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
2524exlimiv 1845 . 2 (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
262, 25mpcom 37 1 ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540   ⊊ wpss 3541   class class class wbr 4583  ◡ccnv 5037  ran crn 5039   ↾ cres 5040  –onto→wfo 5802  –1-1-onto→wf1o 5803  ωcom 6957  reccrdg 7392   ≈ cen 7838   ≼ cdom 7839 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-en 7842  df-dom 7843 This theorem is referenced by:  isfin4-2  9019
 Copyright terms: Public domain W3C validator