MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmo Structured version   Visualization version   GIF version

Theorem infmo 8284
Description: Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by AV, 6-Oct-2020.)
Hypothesis
Ref Expression
infmo.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infmo (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem infmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 infmo.1 . . 3 (𝜑𝑅 Or 𝐴)
2 ancom 465 . . . . . . . 8 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
32anbi2ci 728 . . . . . . 7 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) ∧ (∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)))
4 an42 862 . . . . . . 7 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) ∧ (∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
5 an42 862 . . . . . . 7 (((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤)) ↔ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)))
63, 4, 53bitr4i 291 . . . . . 6 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤)))
7 ralnex 2975 . . . . . . . . . . . . 13 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ¬ ∃𝑦𝐵 𝑦𝑅𝑥)
8 breq2 4587 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑤𝑅𝑦𝑤𝑅𝑥))
9 breq2 4587 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → (𝑧𝑅𝑦𝑧𝑅𝑥))
109rexbidv 3034 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑧𝑅𝑥))
118, 10imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑧𝑅𝑥)))
1211rspcva 3280 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑧𝑅𝑥))
13 breq1 4586 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
1413cbvrexv 3148 . . . . . . . . . . . . . . 15 (∃𝑦𝐵 𝑦𝑅𝑥 ↔ ∃𝑧𝐵 𝑧𝑅𝑥)
1512, 14syl6ibr 241 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝑤𝑅𝑥 → ∃𝑦𝐵 𝑦𝑅𝑥))
1615con3d 147 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (¬ ∃𝑦𝐵 𝑦𝑅𝑥 → ¬ 𝑤𝑅𝑥))
177, 16syl5bi 231 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 → ¬ 𝑤𝑅𝑥))
1817expimpd 627 . . . . . . . . . . 11 (𝑥𝐴 → ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → ¬ 𝑤𝑅𝑥))
1918ad2antrl 760 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → ¬ 𝑤𝑅𝑥))
20 ralnex 2975 . . . . . . . . . . . . 13 (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ↔ ¬ ∃𝑦𝐵 𝑦𝑅𝑤)
21 breq2 4587 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝑥𝑅𝑦𝑥𝑅𝑤))
22 breq2 4587 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
2322rexbidv 3034 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑧𝑅𝑤))
2421, 23imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑥𝑅𝑤 → ∃𝑧𝐵 𝑧𝑅𝑤)))
2524rspcva 3280 . . . . . . . . . . . . . . 15 ((𝑤𝐴 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝑥𝑅𝑤 → ∃𝑧𝐵 𝑧𝑅𝑤))
26 breq1 4586 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (𝑦𝑅𝑤𝑧𝑅𝑤))
2726cbvrexv 3148 . . . . . . . . . . . . . . 15 (∃𝑦𝐵 𝑦𝑅𝑤 ↔ ∃𝑧𝐵 𝑧𝑅𝑤)
2825, 27syl6ibr 241 . . . . . . . . . . . . . 14 ((𝑤𝐴 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝑥𝑅𝑤 → ∃𝑦𝐵 𝑦𝑅𝑤))
2928con3d 147 . . . . . . . . . . . . 13 ((𝑤𝐴 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (¬ ∃𝑦𝐵 𝑦𝑅𝑤 → ¬ 𝑥𝑅𝑤))
3020, 29syl5bi 231 . . . . . . . . . . . 12 ((𝑤𝐴 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 → ¬ 𝑥𝑅𝑤))
3130expimpd 627 . . . . . . . . . . 11 (𝑤𝐴 → ((∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) → ¬ 𝑥𝑅𝑤))
3231ad2antll 761 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → ((∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) → ¬ 𝑥𝑅𝑤))
3319, 32anim12d 584 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤)) → (¬ 𝑤𝑅𝑥 ∧ ¬ 𝑥𝑅𝑤)))
3433imp 444 . . . . . . . 8 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) ∧ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤))) → (¬ 𝑤𝑅𝑥 ∧ ¬ 𝑥𝑅𝑤))
3534ancomd 466 . . . . . . 7 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) ∧ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤))) → (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥))
3635ex 449 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤)) → (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥)))
376, 36syl5bi 231 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥)))
38 sotrieq2 4987 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (𝑥 = 𝑤 ↔ (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥)))
3937, 38sylibrd 248 . . . 4 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → 𝑥 = 𝑤))
4039ralrimivva 2954 . . 3 (𝑅 Or 𝐴 → ∀𝑥𝐴𝑤𝐴 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → 𝑥 = 𝑤))
411, 40syl 17 . 2 (𝜑 → ∀𝑥𝐴𝑤𝐴 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → 𝑥 = 𝑤))
42 breq2 4587 . . . . . 6 (𝑥 = 𝑤 → (𝑦𝑅𝑥𝑦𝑅𝑤))
4342notbid 307 . . . . 5 (𝑥 = 𝑤 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑤))
4443ralbidv 2969 . . . 4 (𝑥 = 𝑤 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤))
45 breq1 4586 . . . . . 6 (𝑥 = 𝑤 → (𝑥𝑅𝑦𝑤𝑅𝑦))
4645imbi1d 330 . . . . 5 (𝑥 = 𝑤 → ((𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
4746ralbidv 2969 . . . 4 (𝑥 = 𝑤 → (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
4844, 47anbi12d 743 . . 3 (𝑥 = 𝑤 → ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
4948rmo4 3366 . 2 (∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ ∀𝑥𝐴𝑤𝐴 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → 𝑥 = 𝑤))
5041, 49sylibr 223 1 (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wcel 1977  wral 2896  wrex 2897  ∃*wrmo 2899   class class class wbr 4583   Or wor 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rmo 2904  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-po 4959  df-so 4960
This theorem is referenced by:  infeu  8285
  Copyright terms: Public domain W3C validator