Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infensuc Structured version   Visualization version   GIF version

Theorem infensuc 8023
 Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
infensuc ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)

Proof of Theorem infensuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onprc 6876 . . . . 5 ¬ On ∈ V
2 eleq1 2676 . . . . 5 (ω = On → (ω ∈ V ↔ On ∈ V))
31, 2mtbiri 316 . . . 4 (ω = On → ¬ ω ∈ V)
4 ssexg 4732 . . . . 5 ((ω ⊆ 𝐴𝐴 ∈ On) → ω ∈ V)
54ancoms 468 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ω ∈ V)
63, 5nsyl3 132 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ¬ ω = On)
7 omon 6968 . . . 4 (ω ∈ On ∨ ω = On)
87ori 389 . . 3 (¬ ω ∈ On → ω = On)
96, 8nsyl2 141 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ω ∈ On)
10 id 22 . . . . . . 7 (𝑥 = ω → 𝑥 = ω)
11 suceq 5707 . . . . . . 7 (𝑥 = ω → suc 𝑥 = suc ω)
1210, 11breq12d 4596 . . . . . 6 (𝑥 = ω → (𝑥 ≈ suc 𝑥 ↔ ω ≈ suc ω))
13 id 22 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
14 suceq 5707 . . . . . . 7 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1513, 14breq12d 4596 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑥𝑦 ≈ suc 𝑦))
16 id 22 . . . . . . 7 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
17 suceq 5707 . . . . . . 7 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1816, 17breq12d 4596 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 ≈ suc 𝑥 ↔ suc 𝑦 ≈ suc suc 𝑦))
19 id 22 . . . . . . 7 (𝑥 = 𝐴𝑥 = 𝐴)
20 suceq 5707 . . . . . . 7 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
2119, 20breq12d 4596 . . . . . 6 (𝑥 = 𝐴 → (𝑥 ≈ suc 𝑥𝐴 ≈ suc 𝐴))
22 limom 6972 . . . . . . 7 Lim ω
2322limensuci 8021 . . . . . 6 (ω ∈ On → ω ≈ suc ω)
24 vex 3176 . . . . . . . . . 10 𝑦 ∈ V
2524sucex 6903 . . . . . . . . . 10 suc 𝑦 ∈ V
26 en2sn 7922 . . . . . . . . . 10 ((𝑦 ∈ V ∧ suc 𝑦 ∈ V) → {𝑦} ≈ {suc 𝑦})
2724, 25, 26mp2an 704 . . . . . . . . 9 {𝑦} ≈ {suc 𝑦}
28 eloni 5650 . . . . . . . . . . . . 13 (𝑦 ∈ On → Ord 𝑦)
29 ordirr 5658 . . . . . . . . . . . . 13 (Ord 𝑦 → ¬ 𝑦𝑦)
3028, 29syl 17 . . . . . . . . . . . 12 (𝑦 ∈ On → ¬ 𝑦𝑦)
31 disjsn 4192 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑦)
3230, 31sylibr 223 . . . . . . . . . . 11 (𝑦 ∈ On → (𝑦 ∩ {𝑦}) = ∅)
33 eloni 5650 . . . . . . . . . . . . 13 (suc 𝑦 ∈ On → Ord suc 𝑦)
34 ordirr 5658 . . . . . . . . . . . . 13 (Ord suc 𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)
3533, 34syl 17 . . . . . . . . . . . 12 (suc 𝑦 ∈ On → ¬ suc 𝑦 ∈ suc 𝑦)
36 sucelon 6909 . . . . . . . . . . . 12 (𝑦 ∈ On ↔ suc 𝑦 ∈ On)
37 disjsn 4192 . . . . . . . . . . . 12 ((suc 𝑦 ∩ {suc 𝑦}) = ∅ ↔ ¬ suc 𝑦 ∈ suc 𝑦)
3835, 36, 373imtr4i 280 . . . . . . . . . . 11 (𝑦 ∈ On → (suc 𝑦 ∩ {suc 𝑦}) = ∅)
3932, 38jca 553 . . . . . . . . . 10 (𝑦 ∈ On → ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅))
40 unen 7925 . . . . . . . . . . . 12 (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (suc 𝑦 ∪ {suc 𝑦}))
41 df-suc 5646 . . . . . . . . . . . 12 suc 𝑦 = (𝑦 ∪ {𝑦})
42 df-suc 5646 . . . . . . . . . . . 12 suc suc 𝑦 = (suc 𝑦 ∪ {suc 𝑦})
4340, 41, 423brtr4g 4617 . . . . . . . . . . 11 (((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅)) → suc 𝑦 ≈ suc suc 𝑦)
4443ex 449 . . . . . . . . . 10 ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (((𝑦 ∩ {𝑦}) = ∅ ∧ (suc 𝑦 ∩ {suc 𝑦}) = ∅) → suc 𝑦 ≈ suc suc 𝑦))
4539, 44syl5 33 . . . . . . . . 9 ((𝑦 ≈ suc 𝑦 ∧ {𝑦} ≈ {suc 𝑦}) → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦))
4627, 45mpan2 703 . . . . . . . 8 (𝑦 ≈ suc 𝑦 → (𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦))
4746com12 32 . . . . . . 7 (𝑦 ∈ On → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦))
4847ad2antrr 758 . . . . . 6 (((𝑦 ∈ On ∧ ω ∈ On) ∧ ω ⊆ 𝑦) → (𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦))
49 vex 3176 . . . . . . . . 9 𝑥 ∈ V
50 limensuc 8022 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ≈ suc 𝑥)
5149, 50mpan 702 . . . . . . . 8 (Lim 𝑥𝑥 ≈ suc 𝑥)
5251ad2antrr 758 . . . . . . 7 (((Lim 𝑥 ∧ ω ∈ On) ∧ ω ⊆ 𝑥) → 𝑥 ≈ suc 𝑥)
5352a1d 25 . . . . . 6 (((Lim 𝑥 ∧ ω ∈ On) ∧ ω ⊆ 𝑥) → (∀𝑦𝑥 (ω ⊆ 𝑦𝑦 ≈ suc 𝑦) → 𝑥 ≈ suc 𝑥))
5412, 15, 18, 21, 23, 48, 53tfindsg 6952 . . . . 5 (((𝐴 ∈ On ∧ ω ∈ On) ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)
5554exp31 628 . . . 4 (𝐴 ∈ On → (ω ∈ On → (ω ⊆ 𝐴𝐴 ≈ suc 𝐴)))
5655com23 84 . . 3 (𝐴 ∈ On → (ω ⊆ 𝐴 → (ω ∈ On → 𝐴 ≈ suc 𝐴)))
5756imp 444 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (ω ∈ On → 𝐴 ≈ suc 𝐴))
589, 57mpd 15 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125   class class class wbr 4583  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  ωcom 6957   ≈ cen 7838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843 This theorem is referenced by:  cardlim  8681  cardsucinf  8693
 Copyright terms: Public domain W3C validator