MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif Structured version   Visualization version   GIF version

Theorem infdif 8914
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdif
StepHypRef Expression
1 simp1 1054 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
2 difss 3699 . . 3 (𝐴𝐵) ⊆ 𝐴
3 ssdomg 7887 . . 3 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
41, 2, 3mpisyl 21 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ 𝐴)
5 sdomdom 7869 . . . . . . . . 9 (𝐵𝐴𝐵𝐴)
653ad2ant3 1077 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
7 numdom 8744 . . . . . . . 8 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
81, 6, 7syl2anc 691 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ dom card)
9 unnum 8905 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
101, 8, 9syl2anc 691 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
11 ssun1 3738 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
12 ssdomg 7887 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
1310, 11, 12mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
14 undif1 3995 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
15 ssnum 8745 . . . . . . . 8 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ dom card)
161, 2, 15sylancl 693 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
17 uncdadom 8876 . . . . . . 7 (((𝐴𝐵) ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) +𝑐 𝐵))
1816, 8, 17syl2anc 691 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) +𝑐 𝐵))
1914, 18syl5eqbrr 4619 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) +𝑐 𝐵))
20 domtr 7895 . . . . 5 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ((𝐴𝐵) +𝑐 𝐵)) → 𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵))
2113, 19, 20syl2anc 691 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵))
22 simp3 1056 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
23 sdomdom 7869 . . . . . . . . 9 ((𝐴𝐵) ≺ 𝐵 → (𝐴𝐵) ≼ 𝐵)
24 cdadom1 8891 . . . . . . . . 9 ((𝐴𝐵) ≼ 𝐵 → ((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵))
2523, 24syl 17 . . . . . . . 8 ((𝐴𝐵) ≺ 𝐵 → ((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵))
26 domtr 7895 . . . . . . . . . . 11 ((𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵) ∧ ((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵)) → 𝐴 ≼ (𝐵 +𝑐 𝐵))
2726ex 449 . . . . . . . . . 10 (𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵) → (((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵) → 𝐴 ≼ (𝐵 +𝑐 𝐵)))
2821, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵) → 𝐴 ≼ (𝐵 +𝑐 𝐵)))
29 simp2 1055 . . . . . . . . . . . 12 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
30 domtr 7895 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ≼ (𝐵 +𝑐 𝐵)) → ω ≼ (𝐵 +𝑐 𝐵))
3130ex 449 . . . . . . . . . . . 12 (ω ≼ 𝐴 → (𝐴 ≼ (𝐵 +𝑐 𝐵) → ω ≼ (𝐵 +𝑐 𝐵)))
3229, 31syl 17 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵 +𝑐 𝐵) → ω ≼ (𝐵 +𝑐 𝐵)))
33 cdainf 8897 . . . . . . . . . . . . 13 (ω ≼ 𝐵 ↔ ω ≼ (𝐵 +𝑐 𝐵))
3433biimpri 217 . . . . . . . . . . . 12 (ω ≼ (𝐵 +𝑐 𝐵) → ω ≼ 𝐵)
35 domrefg 7876 . . . . . . . . . . . . 13 (𝐵 ∈ dom card → 𝐵𝐵)
36 infcdaabs 8911 . . . . . . . . . . . . . . 15 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐵𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵)
37363com23 1263 . . . . . . . . . . . . . 14 ((𝐵 ∈ dom card ∧ 𝐵𝐵 ∧ ω ≼ 𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵)
38373expia 1259 . . . . . . . . . . . . 13 ((𝐵 ∈ dom card ∧ 𝐵𝐵) → (ω ≼ 𝐵 → (𝐵 +𝑐 𝐵) ≈ 𝐵))
3935, 38mpdan 699 . . . . . . . . . . . 12 (𝐵 ∈ dom card → (ω ≼ 𝐵 → (𝐵 +𝑐 𝐵) ≈ 𝐵))
408, 34, 39syl2im 39 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (ω ≼ (𝐵 +𝑐 𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵))
4132, 40syld 46 . . . . . . . . . 10 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵 +𝑐 𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵))
42 domen2 7988 . . . . . . . . . . 11 ((𝐵 +𝑐 𝐵) ≈ 𝐵 → (𝐴 ≼ (𝐵 +𝑐 𝐵) ↔ 𝐴𝐵))
4342biimpcd 238 . . . . . . . . . 10 (𝐴 ≼ (𝐵 +𝑐 𝐵) → ((𝐵 +𝑐 𝐵) ≈ 𝐵𝐴𝐵))
4441, 43sylcom 30 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵 +𝑐 𝐵) → 𝐴𝐵))
4528, 44syld 46 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵) → 𝐴𝐵))
46 domnsym 7971 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐵𝐴)
4725, 45, 46syl56 35 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ≺ 𝐵 → ¬ 𝐵𝐴))
4822, 47mt2d 130 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≺ 𝐵)
49 domtri2 8698 . . . . . . 7 ((𝐵 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
508, 16, 49syl2anc 691 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
5148, 50mpbird 246 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≼ (𝐴𝐵))
52 cdadom2 8892 . . . . 5 (𝐵 ≼ (𝐴𝐵) → ((𝐴𝐵) +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
5351, 52syl 17 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
54 domtr 7895 . . . 4 ((𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵) ∧ ((𝐴𝐵) +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵))) → 𝐴 ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
5521, 53, 54syl2anc 691 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
56 domtr 7895 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵))) → ω ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
5729, 55, 56syl2anc 691 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
58 cdainf 8897 . . . . 5 (ω ≼ (𝐴𝐵) ↔ ω ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
5957, 58sylibr 223 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴𝐵))
60 domrefg 7876 . . . . 5 ((𝐴𝐵) ∈ dom card → (𝐴𝐵) ≼ (𝐴𝐵))
6116, 60syl 17 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
62 infcdaabs 8911 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → ((𝐴𝐵) +𝑐 (𝐴𝐵)) ≈ (𝐴𝐵))
6316, 59, 61, 62syl3anc 1318 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) +𝑐 (𝐴𝐵)) ≈ (𝐴𝐵))
64 domentr 7901 . . 3 ((𝐴 ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)) ∧ ((𝐴𝐵) +𝑐 (𝐴𝐵)) ≈ (𝐴𝐵)) → 𝐴 ≼ (𝐴𝐵))
6555, 63, 64syl2anc 691 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
66 sbth 7965 . 2 (((𝐴𝐵) ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ 𝐴)
674, 65, 66syl2anc 691 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  w3a 1031  wcel 1977  cdif 3537  cun 3538  wss 3540   class class class wbr 4583  dom cdm 5038  (class class class)co 6549  ωcom 6957  cen 7838  cdom 7839  csdm 7840  cardccrd 8644   +𝑐 ccda 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-cda 8873
This theorem is referenced by:  infdif2  8915  alephsuc3  9281  aleph1irr  14814
  Copyright terms: Public domain W3C validator