Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem7 Structured version   Visualization version   GIF version

Theorem inf3lem7 8414
 Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8415 for detailed description. In the proof, we invoke the Axiom of Replacement in the form of f1dmex 7029. (Contributed by NM, 29-Oct-1996.) (Proof shortened by Mario Carneiro, 19-Jan-2013.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem7 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem7
StepHypRef Expression
1 inf3lem.1 . . 3 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . 3 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . 3 𝐴 ∈ V
4 inf3lem.4 . . 3 𝐵 ∈ V
51, 2, 3, 4inf3lem6 8413 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
6 vpwex 4775 . 2 𝒫 𝑥 ∈ V
7 f1dmex 7029 . 2 ((𝐹:ω–1-1→𝒫 𝑥 ∧ 𝒫 𝑥 ∈ V) → ω ∈ V)
85, 6, 7sylancl 693 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  {crab 2900  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  ∪ cuni 4372   ↦ cmpt 4643   ↾ cres 5040  –1-1→wf1 5801  ωcom 6957  reccrdg 7392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393 This theorem is referenced by:  inf3  8415  infeq5  8417
 Copyright terms: Public domain W3C validator