Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indiscon | Structured version Visualization version GIF version |
Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indiscon | ⊢ {∅, 𝐴} ∈ Con |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistop 20616 | . 2 ⊢ {∅, 𝐴} ∈ Top | |
2 | inss1 3795 | . . 3 ⊢ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, 𝐴} | |
3 | indislem 20614 | . . 3 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | |
4 | 2, 3 | sseqtr4i 3601 | . 2 ⊢ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)} |
5 | indisuni 20617 | . . 3 ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} | |
6 | 5 | iscon2 21027 | . 2 ⊢ ({∅, 𝐴} ∈ Con ↔ ({∅, 𝐴} ∈ Top ∧ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)})) |
7 | 1, 4, 6 | mpbir2an 957 | 1 ⊢ {∅, 𝐴} ∈ Con |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 ∩ cin 3539 ⊆ wss 3540 ∅c0 3874 {cpr 4127 I cid 4948 ‘cfv 5804 Topctop 20517 Clsdccld 20630 Conccon 21024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-top 20521 df-topon 20523 df-cld 20633 df-con 21025 |
This theorem is referenced by: concompid 21044 cvmlift2lem9 30547 |
Copyright terms: Public domain | W3C validator |