Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1ofs Structured version   Visualization version   GIF version

Theorem indf1ofs 29415
 Description: The bijection between finite subsets and the indicator functions with finite support. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
indf1ofs (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Distinct variable group:   𝑓,𝑂
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem indf1ofs
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indf1o 29413 . . . 4 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂))
2 f1of1 6049 . . . 4 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂) → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑𝑚 𝑂))
31, 2syl 17 . . 3 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑𝑚 𝑂))
4 inss1 3795 . . 3 (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂
5 f1ores 6064 . . 3 (((𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑𝑚 𝑂) ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
63, 4, 5sylancl 693 . 2 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
7 resres 5329 . . . 4 (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin))
8 f1ofn 6051 . . . . . 6 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂) → (𝟭‘𝑂) Fn 𝒫 𝑂)
9 fnresdm 5914 . . . . . 6 ((𝟭‘𝑂) Fn 𝒫 𝑂 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
101, 8, 93syl 18 . . . . 5 (𝑂𝑉 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
1110reseq1d 5316 . . . 4 (𝑂𝑉 → (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ Fin))
127, 11syl5eqr 2658 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)) = ((𝟭‘𝑂) ↾ Fin))
13 eqidd 2611 . . 3 (𝑂𝑉 → (𝒫 𝑂 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
14 simpll 786 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑂𝑉)
15 simpr 476 . . . . . . . . . . . . . . 15 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ (𝒫 𝑂 ∩ Fin))
164, 15sseldi 3566 . . . . . . . . . . . . . 14 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ 𝒫 𝑂)
1716elpwid 4118 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎𝑂)
18 indf 29405 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎𝑂) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
1917, 18syldan 486 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
2019adantr 480 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
21 simpr 476 . . . . . . . . . . . 12 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
2221feq1d 5943 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1} ↔ 𝑔:𝑂⟶{0, 1}))
2320, 22mpbid 221 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔:𝑂⟶{0, 1})
24 prex 4836 . . . . . . . . . . . 12 {0, 1} ∈ V
25 elmapg 7757 . . . . . . . . . . . 12 (({0, 1} ∈ V ∧ 𝑂𝑉) → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2624, 25mpan 702 . . . . . . . . . . 11 (𝑂𝑉 → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2726biimpar 501 . . . . . . . . . 10 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 ∈ ({0, 1} ↑𝑚 𝑂))
2814, 23, 27syl2anc 691 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔 ∈ ({0, 1} ↑𝑚 𝑂))
2921cnveqd 5220 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
3029imaeq1d 5384 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) = (𝑔 “ {1}))
31 indpi1 29411 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎𝑂) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
3217, 31syldan 486 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
33 inss2 3796 . . . . . . . . . . . . 13 (𝒫 𝑂 ∩ Fin) ⊆ Fin
3433, 15sseldi 3566 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ Fin)
3532, 34eqeltrd 2688 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3635adantr 480 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3730, 36eqeltrrd 2689 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 “ {1}) ∈ Fin)
3828, 37jca 553 . . . . . . . 8 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
3938ex 449 . . . . . . 7 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) = 𝑔 → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
4039rexlimdva 3013 . . . . . 6 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
41 cnvimass 5404 . . . . . . . . . 10 (𝑔 “ {1}) ⊆ dom 𝑔
4226biimpa 500 . . . . . . . . . . . 12 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝑂)) → 𝑔:𝑂⟶{0, 1})
43 fdm 5964 . . . . . . . . . . . 12 (𝑔:𝑂⟶{0, 1} → dom 𝑔 = 𝑂)
4442, 43syl 17 . . . . . . . . . . 11 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝑂)) → dom 𝑔 = 𝑂)
4544adantrr 749 . . . . . . . . . 10 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → dom 𝑔 = 𝑂)
4641, 45syl5sseq 3616 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ⊆ 𝑂)
47 simprr 792 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ Fin)
48 elfpw 8151 . . . . . . . . 9 ((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ↔ ((𝑔 “ {1}) ⊆ 𝑂 ∧ (𝑔 “ {1}) ∈ Fin))
4946, 47, 48sylanbrc 695 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin))
50 indpreima 29414 . . . . . . . . . . 11 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 = ((𝟭‘𝑂)‘(𝑔 “ {1})))
5150eqcomd 2616 . . . . . . . . . 10 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5242, 51syldan 486 . . . . . . . . 9 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝑂)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5352adantrr 749 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
54 fveq2 6103 . . . . . . . . . 10 (𝑎 = (𝑔 “ {1}) → ((𝟭‘𝑂)‘𝑎) = ((𝟭‘𝑂)‘(𝑔 “ {1})))
5554eqeq1d 2612 . . . . . . . . 9 (𝑎 = (𝑔 “ {1}) → (((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔))
5655rspcev 3282 . . . . . . . 8 (((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ∧ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5749, 53, 56syl2anc 691 . . . . . . 7 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5857ex 449 . . . . . 6 (𝑂𝑉 → ((𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
5940, 58impbid 201 . . . . 5 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
601, 8syl 17 . . . . . 6 (𝑂𝑉 → (𝟭‘𝑂) Fn 𝒫 𝑂)
61 fvelimab 6163 . . . . . 6 (((𝟭‘𝑂) Fn 𝒫 𝑂 ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
6260, 4, 61sylancl 693 . . . . 5 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
63 cnveq 5218 . . . . . . . . 9 (𝑓 = 𝑔𝑓 = 𝑔)
6463imaeq1d 5384 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓 “ {1}) = (𝑔 “ {1}))
6564eleq1d 2672 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓 “ {1}) ∈ Fin ↔ (𝑔 “ {1}) ∈ Fin))
6665elrab 3331 . . . . . 6 (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
6766a1i 11 . . . . 5 (𝑂𝑉 → (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
6859, 62, 673bitr4d 299 . . . 4 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ 𝑔 ∈ {𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
6968eqrdv 2608 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) = {𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
7012, 13, 69f1oeq123d 6046 . 2 (𝑂𝑉 → (((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
716, 70mpbid 221 1 (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  {crab 2900  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  {csn 4125  {cpr 4127  ◡ccnv 5037  dom cdm 5038   ↾ cres 5040   “ cima 5041   Fn wfn 5799  ⟶wf 5800  –1-1→wf1 5801  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Fincfn 7841  0cc0 9815  1c1 9816  𝟭cind 29400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-ind 29401 This theorem is referenced by:  eulerpartgbij  29761
 Copyright terms: Public domain W3C validator