Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind1 Structured version   Visualization version   GIF version

Theorem ind1 29408
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
ind1 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1)

Proof of Theorem ind1
StepHypRef Expression
1 simp2 1055 . . . 4 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝐴𝑂)
2 simp3 1056 . . . 4 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝑋𝐴)
31, 2sseldd 3569 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝐴) → 𝑋𝑂)
4 indfval 29406 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
53, 4syld3an3 1363 . 2 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
6 iftrue 4042 . . 3 (𝑋𝐴 → if(𝑋𝐴, 1, 0) = 1)
763ad2ant3 1077 . 2 ((𝑂𝑉𝐴𝑂𝑋𝐴) → if(𝑋𝐴, 1, 0) = 1)
85, 7eqtrd 2644 1 ((𝑂𝑉𝐴𝑂𝑋𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wss 3540  ifcif 4036  cfv 5804  0cc0 9815  1c1 9816  𝟭cind 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-ind 29401
This theorem is referenced by:  indsum  29412
  Copyright terms: Public domain W3C validator