Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsmf Structured version   Visualization version   GIF version

Theorem incsmf 39629
Description: A real valued, non-decreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
incsmf.a (𝜑𝐴 ⊆ ℝ)
incsmf.f (𝜑𝐹:𝐴⟶ℝ)
incsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
incsmf.j 𝐽 = (topGen‘ran (,))
incsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
incsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem incsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . 2 𝑎𝜑
2 incsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 22375 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2684 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 incsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 39243 . 2 (𝜑𝐵 ∈ SAlg)
8 incsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 39248 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4381 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 22376 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2619 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2649 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 3604 . 2 (𝜑𝐴 𝐵)
17 incsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 nfv 1830 . . . 4 𝑤(𝜑𝑎 ∈ ℝ)
19 nfv 1830 . . . 4 𝑧(𝜑𝑎 ∈ ℝ)
208adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2117frexr 38545 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2221adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
23 incsmf.i . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
24 breq1 4586 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
25 fveq2 6103 . . . . . . . . 9 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2625breq1d 4593 . . . . . . . 8 (𝑥 = 𝑤 → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑦)))
2724, 26imbi12d 333 . . . . . . 7 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ (𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦))))
28 breq2 4587 . . . . . . . 8 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
29 fveq2 6103 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3029breq2d 4595 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹𝑤) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑧)))
3128, 30imbi12d 333 . . . . . . 7 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦)) ↔ (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧))))
3227, 31cbvral2v 3155 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3323, 32sylib 207 . . . . 5 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3433adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
35 rexr 9964 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635adantl 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
3725breq1d 4593 . . . . 5 (𝑥 = 𝑤 → ((𝐹𝑥) < 𝑎 ↔ (𝐹𝑤) < 𝑎))
3837cbvrabv 3172 . . . 4 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = {𝑤𝐴 ∣ (𝐹𝑤) < 𝑎}
39 eqid 2610 . . . 4 sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )
40 eqid 2610 . . . 4 (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
41 eqid 2610 . . . 4 (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
4218, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41incsmflem 39628 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴))
43 reex 9906 . . . . . . 7 ℝ ∈ V
4443a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4544, 8ssexd 4733 . . . . 5 (𝜑𝐴 ∈ V)
46 elrest 15911 . . . . 5 ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
477, 45, 46syl2anc 691 . . . 4 (𝜑 → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4847adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4942, 48mpbird 246 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴))
501, 7, 16, 17, 49issmfd 39621 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540   cuni 4372   class class class wbr 4583  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  (,)cioo 12046  (,]cioc 12047  t crest 15904  topGenctg 15921  Topctop 20517  SAlgcsalg 39204  SalGencsalgen 39208  SMblFncsmblfn 39586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-ioc 12051  df-ico 12052  df-fl 12455  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-salg 39205  df-salgen 39209  df-smblfn 39587
This theorem is referenced by:  smfid  39639
  Copyright terms: Public domain W3C validator