MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4bOLD Structured version   Visualization version   GIF version

Theorem imp4bOLD 614
Description: Obsolete proof of imp4b 611 as of 19-Jul-2021. (Contributed by NM, 26-Apr-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4bOLD ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))

Proof of Theorem imp4bOLD
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4a 612 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32imp 444 1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator