Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasmnd | Structured version Visualization version GIF version |
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
imasmnd.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasmnd.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasmnd.p | ⊢ + = (+g‘𝑅) |
imasmnd.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasmnd.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
imasmnd.r | ⊢ (𝜑 → 𝑅 ∈ Mnd) |
imasmnd.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
imasmnd | ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasmnd.u | . 2 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasmnd.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasmnd.p | . 2 ⊢ + = (+g‘𝑅) | |
4 | imasmnd.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
5 | imasmnd.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
6 | imasmnd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) | |
7 | 6 | 3ad2ant1 1075 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑅 ∈ Mnd) |
8 | simp2 1055 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) | |
9 | 2 | 3ad2ant1 1075 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑉 = (Base‘𝑅)) |
10 | 8, 9 | eleqtrd 2690 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
11 | simp3 1056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) | |
12 | 11, 9 | eleqtrd 2690 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ (Base‘𝑅)) |
13 | eqid 2610 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 13, 3 | mndcl 17124 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
15 | 7, 10, 12, 14 | syl3anc 1318 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
16 | 15, 9 | eleqtrrd 2691 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) |
17 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑅 ∈ Mnd) |
18 | 10 | 3adant3r3 1268 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
19 | 12 | 3adant3r3 1268 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
20 | simpr3 1062 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) | |
21 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
22 | 20, 21 | eleqtrd 2690 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ (Base‘𝑅)) |
23 | 13, 3 | mndass 17125 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
24 | 17, 18, 19, 22, 23 | syl13anc 1320 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
25 | 24 | fveq2d 6107 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) |
26 | imasmnd.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
27 | 13, 26 | mndidcl 17131 | . . . 4 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
28 | 6, 27 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
29 | 28, 2 | eleqtrrd 2691 | . 2 ⊢ (𝜑 → 0 ∈ 𝑉) |
30 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈ Mnd) |
31 | 2 | eleq2d 2673 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
32 | 31 | biimpa 500 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
33 | 13, 3, 26 | mndlid 17134 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 + 𝑥) = 𝑥) |
34 | 30, 32, 33 | syl2anc 691 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) = 𝑥) |
35 | 34 | fveq2d 6107 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) |
36 | 13, 3, 26 | mndrid 17135 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 + 0 ) = 𝑥) |
37 | 30, 32, 36 | syl2anc 691 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑥 + 0 ) = 𝑥) |
38 | 37 | fveq2d 6107 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹‘𝑥)) |
39 | 1, 2, 3, 4, 5, 6, 16, 25, 29, 35, 38 | imasmnd2 17150 | 1 ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 –onto→wfo 5802 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 0gc0g 15923 “s cimas 15987 Mndcmnd 17117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-0g 15925 df-imas 15991 df-mgm 17065 df-sgrp 17107 df-mnd 17118 |
This theorem is referenced by: imasmndf1 17152 |
Copyright terms: Public domain | W3C validator |