Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasf1omet | Structured version Visualization version GIF version |
Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
imasf1oxmet.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasf1oxmet.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasf1oxmet.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasf1oxmet.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasf1oxmet.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasf1oxmet.d | ⊢ 𝐷 = (dist‘𝑈) |
imasf1omet.m | ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) |
Ref | Expression |
---|---|
imasf1omet | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasf1oxmet.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasf1oxmet.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasf1oxmet.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
4 | imasf1oxmet.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasf1oxmet.e | . . 3 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
6 | imasf1oxmet.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
7 | imasf1omet.m | . . . 4 ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) | |
8 | metxmet 21949 | . . . 4 ⊢ (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
10 | 1, 2, 3, 4, 5, 6, 9 | imasf1oxmet 21990 | . 2 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
11 | f1ofo 6057 | . . . . 5 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
13 | eqid 2610 | . . . 4 ⊢ (dist‘𝑅) = (dist‘𝑅) | |
14 | 1, 2, 12, 4, 13, 6 | imasdsfn 15997 | . . 3 ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) |
15 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑈 = (𝐹 “s 𝑅)) |
16 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
17 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐹:𝑉–1-1-onto→𝐵) |
18 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑅 ∈ 𝑍) |
19 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐸 ∈ (∞Met‘𝑉)) |
20 | simprl 790 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
21 | simprr 792 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
22 | 15, 16, 17, 18, 5, 6, 19, 20, 21 | imasdsf1o 21989 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = (𝑎𝐸𝑏)) |
23 | metcl 21947 | . . . . . . . . 9 ⊢ ((𝐸 ∈ (Met‘𝑉) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎𝐸𝑏) ∈ ℝ) | |
24 | 23 | 3expb 1258 | . . . . . . . 8 ⊢ ((𝐸 ∈ (Met‘𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈ ℝ) |
25 | 7, 24 | sylan 487 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈ ℝ) |
26 | 22, 25 | eqeltrd 2688 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ) |
27 | 26 | ralrimivva 2954 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ) |
28 | f1ofn 6051 | . . . . . . . . 9 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹 Fn 𝑉) | |
29 | 3, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
30 | oveq2 6557 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹‘𝑎)𝐷𝑦) = ((𝐹‘𝑎)𝐷(𝐹‘𝑏))) | |
31 | 30 | eleq1d 2672 | . . . . . . . . 9 ⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
32 | 31 | ralrn 6270 | . . . . . . . 8 ⊢ (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
33 | 29, 32 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ)) |
34 | forn 6031 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
35 | 12, 34 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
36 | 35 | raleqdv 3121 | . . . . . . 7 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
37 | 33, 36 | bitr3d 269 | . . . . . 6 ⊢ (𝜑 → (∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
38 | 37 | ralbidv 2969 | . . . . 5 ⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
39 | 27, 38 | mpbid 221 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ) |
40 | oveq1 6556 | . . . . . . . . 9 ⊢ (𝑥 = (𝐹‘𝑎) → (𝑥𝐷𝑦) = ((𝐹‘𝑎)𝐷𝑦)) | |
41 | 40 | eleq1d 2672 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥𝐷𝑦) ∈ ℝ ↔ ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
42 | 41 | ralbidv 2969 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
43 | 42 | ralrn 6270 | . . . . . 6 ⊢ (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
44 | 29, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ)) |
45 | 35 | raleqdv 3121 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) |
46 | 44, 45 | bitr3d 269 | . . . 4 ⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) |
47 | 39, 46 | mpbid 221 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ) |
48 | ffnov 6662 | . . 3 ⊢ (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ)) | |
49 | 14, 47, 48 | sylanbrc 695 | . 2 ⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶ℝ) |
50 | ismet2 21948 | . 2 ⊢ (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ)) | |
51 | 10, 49, 50 | sylanbrc 695 | 1 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 × cxp 5036 ran crn 5039 ↾ cres 5040 Fn wfn 5799 ⟶wf 5800 –onto→wfo 5802 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 Basecbs 15695 distcds 15777 “s cimas 15987 ∞Metcxmt 19552 Metcme 19553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-0g 15925 df-gsum 15926 df-xrs 15985 df-imas 15991 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-mulg 17364 df-cntz 17573 df-cmn 18018 df-xmet 19560 df-met 19561 |
This theorem is referenced by: xpsmet 21997 imasf1oms 22105 |
Copyright terms: Public domain | W3C validator |