MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1obl Structured version   Visualization version   GIF version

Theorem imasf1obl 22103
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1obl.r (𝜑𝑅𝑍)
imasf1obl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1obl.d 𝐷 = (dist‘𝑈)
imasf1obl.m (𝜑𝐸 ∈ (∞Met‘𝑉))
imasf1obl.x (𝜑𝑃𝑉)
imasf1obl.s (𝜑𝑆 ∈ ℝ*)
Assertion
Ref Expression
imasf1obl (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))

Proof of Theorem imasf1obl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasf1obl.f . . . . . . . . . 10 (𝜑𝐹:𝑉1-1-onto𝐵)
2 f1ocnvfv2 6433 . . . . . . . . . 10 ((𝐹:𝑉1-1-onto𝐵𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
31, 2sylan 487 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
43oveq2d 6565 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷(𝐹‘(𝐹𝑥))) = ((𝐹𝑃)𝐷𝑥))
5 imasf1obl.u . . . . . . . . . 10 (𝜑𝑈 = (𝐹s 𝑅))
65adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑈 = (𝐹s 𝑅))
7 imasf1obl.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
87adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑉 = (Base‘𝑅))
91adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐹:𝑉1-1-onto𝐵)
10 imasf1obl.r . . . . . . . . . 10 (𝜑𝑅𝑍)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅𝑍)
12 imasf1obl.e . . . . . . . . 9 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
13 imasf1obl.d . . . . . . . . 9 𝐷 = (dist‘𝑈)
14 imasf1obl.m . . . . . . . . . 10 (𝜑𝐸 ∈ (∞Met‘𝑉))
1514adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐸 ∈ (∞Met‘𝑉))
16 imasf1obl.x . . . . . . . . . 10 (𝜑𝑃𝑉)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑃𝑉)
18 f1ocnv 6062 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝐵𝐹:𝐵1-1-onto𝑉)
191, 18syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐵1-1-onto𝑉)
20 f1of 6050 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑉𝐹:𝐵𝑉)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵𝑉)
2221ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹𝑥) ∈ 𝑉)
236, 8, 9, 11, 12, 13, 15, 17, 22imasdsf1o 21989 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷(𝐹‘(𝐹𝑥))) = (𝑃𝐸(𝐹𝑥)))
244, 23eqtr3d 2646 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷𝑥) = (𝑃𝐸(𝐹𝑥)))
2524breq1d 4593 . . . . . 6 ((𝜑𝑥𝐵) → (((𝐹𝑃)𝐷𝑥) < 𝑆 ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
26 imasf1obl.s . . . . . . . 8 (𝜑𝑆 ∈ ℝ*)
2726adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑆 ∈ ℝ*)
28 elbl2 22005 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑆 ∈ ℝ*) ∧ (𝑃𝑉 ∧ (𝐹𝑥) ∈ 𝑉)) → ((𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
2915, 27, 17, 22, 28syl22anc 1319 . . . . . 6 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
3025, 29bitr4d 270 . . . . 5 ((𝜑𝑥𝐵) → (((𝐹𝑃)𝐷𝑥) < 𝑆 ↔ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))
3130pm5.32da 671 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
325, 7, 1, 10, 12, 13, 14imasf1oxmet 21990 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝐵))
33 f1of 6050 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉𝐵)
341, 33syl 17 . . . . . 6 (𝜑𝐹:𝑉𝐵)
3534, 16ffvelrnd 6268 . . . . 5 (𝜑 → (𝐹𝑃) ∈ 𝐵)
36 elbl 22003 . . . . 5 ((𝐷 ∈ (∞Met‘𝐵) ∧ (𝐹𝑃) ∈ 𝐵𝑆 ∈ ℝ*) → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ (𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆)))
3732, 35, 26, 36syl3anc 1318 . . . 4 (𝜑 → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ (𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆)))
38 f1ofn 6051 . . . . 5 (𝐹:𝐵1-1-onto𝑉𝐹 Fn 𝐵)
39 elpreima 6245 . . . . 5 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
4019, 38, 393syl 18 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
4131, 37, 403bitr4d 299 . . 3 (𝜑 → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ 𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆))))
4241eqrdv 2608 . 2 (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))
43 imacnvcnv 5517 . 2 (𝐹 “ (𝑃(ball‘𝐸)𝑆)) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))
4442, 43syl6eq 2660 1 (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583   × cxp 5036  ccnv 5037  cres 5040  cima 5041   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  *cxr 9952   < clt 9953  Basecbs 15695  distcds 15777  s cimas 15987  ∞Metcxmt 19552  ballcbl 19554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-gsum 15926  df-xrs 15985  df-imas 15991  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-bl 19562
This theorem is referenced by:  imasf1oxms  22104
  Copyright terms: Public domain W3C validator