Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imagesset Structured version   Visualization version   GIF version

Theorem imagesset 31230
Description: The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.)
Assertion
Ref Expression
imagesset Image SSet SSet

Proof of Theorem imagesset
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . . . . . . . 8 𝑦𝑦
2 sseq2 3590 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
32rspcev 3282 . . . . . . . 8 ((𝑦𝑥𝑦𝑦) → ∃𝑧𝑥 𝑦𝑧)
41, 3mpan2 703 . . . . . . 7 (𝑦𝑥 → ∃𝑧𝑥 𝑦𝑧)
5 vex 3176 . . . . . . . . 9 𝑦 ∈ V
65elima 5390 . . . . . . . 8 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑧 SSet 𝑦)
7 vex 3176 . . . . . . . . . . 11 𝑧 ∈ V
87, 5brcnv 5227 . . . . . . . . . 10 (𝑧 SSet 𝑦𝑦 SSet 𝑧)
97brsset 31166 . . . . . . . . . 10 (𝑦 SSet 𝑧𝑦𝑧)
108, 9bitri 263 . . . . . . . . 9 (𝑧 SSet 𝑦𝑦𝑧)
1110rexbii 3023 . . . . . . . 8 (∃𝑧𝑥 𝑧 SSet 𝑦 ↔ ∃𝑧𝑥 𝑦𝑧)
126, 11bitri 263 . . . . . . 7 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑦𝑧)
134, 12sylibr 223 . . . . . 6 (𝑦𝑥𝑦 ∈ ( SSet 𝑥))
1413ssriv 3572 . . . . 5 𝑥 ⊆ ( SSet 𝑥)
15 sseq2 3590 . . . . 5 (𝑦 = ( SSet 𝑥) → (𝑥𝑦𝑥 ⊆ ( SSet 𝑥)))
1614, 15mpbiri 247 . . . 4 (𝑦 = ( SSet 𝑥) → 𝑥𝑦)
17 vex 3176 . . . . . 6 𝑥 ∈ V
1817, 5brimage 31203 . . . . 5 (𝑥Image SSet 𝑦𝑦 = ( SSet 𝑥))
19 df-br 4584 . . . . 5 (𝑥Image SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
2018, 19bitr3i 265 . . . 4 (𝑦 = ( SSet 𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
215brsset 31166 . . . . 5 (𝑥 SSet 𝑦𝑥𝑦)
22 df-br 4584 . . . . 5 (𝑥 SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2321, 22bitr3i 265 . . . 4 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2416, 20, 233imtr3i 279 . . 3 (⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
2524gen2 1714 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
26 funimage 31205 . . 3 Fun Image SSet
27 funrel 5821 . . 3 (Fun Image SSet → Rel Image SSet )
28 ssrel 5130 . . 3 (Rel Image SSet → (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )))
2926, 27, 28mp2b 10 . 2 (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet ))
3025, 29mpbir 220 1 Image SSet SSet
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473   = wceq 1475  wcel 1977  wrex 2897  wss 3540  cop 4131   class class class wbr 4583  ccnv 5037  cima 5041  Rel wrel 5043  Fun wfun 5798   SSet csset 31108  Imagecimage 31116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-symdif 3806  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-eprel 4949  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059  df-2nd 7060  df-txp 31130  df-sset 31132  df-image 31140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator