Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinconst Structured version   Visualization version   GIF version

Theorem iinconst 4466
 Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Mario Carneiro, 6-Feb-2015.)
Assertion
Ref Expression
iinconst (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iinconst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.3rzv 4016 . . 3 (𝐴 ≠ ∅ → (𝑦𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
2 vex 3176 . . . 4 𝑦 ∈ V
3 eliin 4461 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
42, 3ax-mp 5 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
51, 4syl6rbbr 278 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
65eqrdv 2608 1 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173  ∅c0 3874  ∩ ciin 4456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-v 3175  df-dif 3543  df-nul 3875  df-iin 4458 This theorem is referenced by:  iin0  4765  ptbasfi  21194
 Copyright terms: Public domain W3C validator