MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpr Structured version   Visualization version   GIF version

Theorem ifpr 4180
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.)
Assertion
Ref Expression
ifpr ((𝐴𝐶𝐵𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})

Proof of Theorem ifpr
StepHypRef Expression
1 elex 3185 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3185 . 2 (𝐵𝐷𝐵 ∈ V)
3 ifcl 4080 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ V)
4 ifeqor 4082 . . . 4 (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)
5 elprg 4144 . . . 4 (if(𝜑, 𝐴, 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵} ↔ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)))
64, 5mpbiri 247 . . 3 (if(𝜑, 𝐴, 𝐵) ∈ V → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
73, 6syl 17 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
81, 2, 7syl2an 493 1 ((𝐴𝐶𝐵𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  ifcif 4036  {cpr 4127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-if 4037  df-sn 4126  df-pr 4128
This theorem is referenced by:  suppr  8260  infpr  8292  uvcvvcl  19945  indf  29405
  Copyright terms: Public domain W3C validator