Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpid3g Structured version   Visualization version   GIF version

Theorem ifpid3g 36856
 Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpid3g ((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ (((𝜑𝜓) → 𝜒) ∧ ((𝜑𝜒) → 𝜓)))

Proof of Theorem ifpid3g
StepHypRef Expression
1 olc 398 . . 3 (𝜒 → (𝜑𝜒))
21, 1pm3.2i 470 . 2 ((𝜒 → (𝜑𝜒)) ∧ (𝜒 → (𝜑𝜒)))
3 ifpidg 36855 . 2 ((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((((𝜑𝜓) → 𝜒) ∧ ((𝜑𝜒) → 𝜓)) ∧ ((𝜒 → (𝜑𝜒)) ∧ (𝜒 → (𝜑𝜒)))))
42, 3mpbiran2 956 1 ((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ (((𝜑𝜓) → 𝜒) ∧ ((𝜑𝜒) → 𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383  if-wif 1006 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator