Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbi12 | Structured version Visualization version GIF version |
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.) |
Ref | Expression |
---|---|
ifpbi12 | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12 335 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
2 | 1 | imp 444 | . . 3 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) |
3 | simpl 472 | . . . . 5 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (𝜑 ↔ 𝜓)) | |
4 | 3 | notbid 307 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (¬ 𝜑 ↔ ¬ 𝜓)) |
5 | 4 | imbi1d 330 | . . 3 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((¬ 𝜑 → 𝜏) ↔ (¬ 𝜓 → 𝜏))) |
6 | 2, 5 | anbi12d 743 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (((𝜑 → 𝜒) ∧ (¬ 𝜑 → 𝜏)) ↔ ((𝜓 → 𝜃) ∧ (¬ 𝜓 → 𝜏)))) |
7 | dfifp2 1008 | . 2 ⊢ (if-(𝜑, 𝜒, 𝜏) ↔ ((𝜑 → 𝜒) ∧ (¬ 𝜑 → 𝜏))) | |
8 | dfifp2 1008 | . 2 ⊢ (if-(𝜓, 𝜃, 𝜏) ↔ ((𝜓 → 𝜃) ∧ (¬ 𝜓 → 𝜏))) | |
9 | 6, 7, 8 | 3bitr4g 302 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 if-wif 1006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |