Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1 Structured version   Visualization version   GIF version

Theorem ifeq1 4040
 Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq1 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))

Proof of Theorem ifeq1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq 3166 . . 3 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
21uneq1d 3728 . 2 (𝐴 = 𝐵 → ({𝑥𝐴𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑}) = ({𝑥𝐵𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑}))
3 dfif6 4039 . 2 if(𝜑, 𝐴, 𝐶) = ({𝑥𝐴𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑})
4 dfif6 4039 . 2 if(𝜑, 𝐵, 𝐶) = ({𝑥𝐵𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑})
52, 3, 43eqtr4g 2669 1 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1475  {crab 2900   ∪ cun 3538  ifcif 4036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-un 3545  df-if 4037 This theorem is referenced by:  ifeq12  4053  ifeq1d  4054  ifbieq12i  4062  ifexg  4107  rdgeq2  7395  dfoi  8299  wemaplem2  8335  cantnflem1  8469  prodeq2w  14481  prodeq2ii  14482  mgm2nsgrplem2  17229  mgm2nsgrplem3  17230  mplcoe3  19287  marrepval0  20186  ellimc  23443  ply1nzb  23686  dchrvmasumiflem1  24990  signspval  29955  dfrdg2  30945  dfafv2  39861
 Copyright terms: Public domain W3C validator