 Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlval Structured version   Visualization version   GIF version

Theorem idlval 32982
 Description: The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
idlval (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧,𝑖   𝑧,𝑋,𝑖   𝑖,𝑍   𝑖,𝐺   𝑖,𝐻
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2 idlval.1 . . . . . . 7 𝐺 = (1st𝑅)
31, 2syl6eqr 2662 . . . . . 6 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
43rneqd 5274 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
5 idlval.3 . . . . 5 𝑋 = ran 𝐺
64, 5syl6eqr 2662 . . . 4 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
76pweqd 4113 . . 3 (𝑟 = 𝑅 → 𝒫 ran (1st𝑟) = 𝒫 𝑋)
83fveq2d 6107 . . . . . 6 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = (GId‘𝐺))
9 idlval.4 . . . . . 6 𝑍 = (GId‘𝐺)
108, 9syl6eqr 2662 . . . . 5 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = 𝑍)
1110eleq1d 2672 . . . 4 (𝑟 = 𝑅 → ((GId‘(1st𝑟)) ∈ 𝑖𝑍𝑖))
123oveqd 6566 . . . . . . . 8 (𝑟 = 𝑅 → (𝑥(1st𝑟)𝑦) = (𝑥𝐺𝑦))
1312eleq1d 2672 . . . . . . 7 (𝑟 = 𝑅 → ((𝑥(1st𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐺𝑦) ∈ 𝑖))
1413ralbidv 2969 . . . . . 6 (𝑟 = 𝑅 → (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖))
15 fveq2 6103 . . . . . . . . . . 11 (𝑟 = 𝑅 → (2nd𝑟) = (2nd𝑅))
16 idlval.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
1715, 16syl6eqr 2662 . . . . . . . . . 10 (𝑟 = 𝑅 → (2nd𝑟) = 𝐻)
1817oveqd 6566 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑧(2nd𝑟)𝑥) = (𝑧𝐻𝑥))
1918eleq1d 2672 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ↔ (𝑧𝐻𝑥) ∈ 𝑖))
2017oveqd 6566 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(2nd𝑟)𝑧) = (𝑥𝐻𝑧))
2120eleq1d 2672 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(2nd𝑟)𝑧) ∈ 𝑖 ↔ (𝑥𝐻𝑧) ∈ 𝑖))
2219, 21anbi12d 743 . . . . . . 7 (𝑟 = 𝑅 → (((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖) ↔ ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))
236, 22raleqbidv 3129 . . . . . 6 (𝑟 = 𝑅 → (∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖) ↔ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))
2414, 23anbi12d 743 . . . . 5 (𝑟 = 𝑅 → ((∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)) ↔ (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))))
2524ralbidv 2969 . . . 4 (𝑟 = 𝑅 → (∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)) ↔ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))))
2611, 25anbi12d 743 . . 3 (𝑟 = 𝑅 → (((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖))) ↔ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))))
277, 26rabeqbidv 3168 . 2 (𝑟 = 𝑅 → {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))} = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
28 df-idl 32979 . 2 Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))})
29 fvex 6113 . . . . . . 7 (1st𝑅) ∈ V
302, 29eqeltri 2684 . . . . . 6 𝐺 ∈ V
3130rnex 6992 . . . . 5 ran 𝐺 ∈ V
325, 31eqeltri 2684 . . . 4 𝑋 ∈ V
3332pwex 4774 . . 3 𝒫 𝑋 ∈ V
3433rabex 4740 . 2 {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))} ∈ V
3527, 28, 34fvmpt 6191 1 (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173  𝒫 cpw 4108  ran crn 5039  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  GIdcgi 26728  RingOpscrngo 32863  Idlcidl 32976 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-idl 32979 This theorem is referenced by:  isidl  32983
 Copyright terms: Public domain W3C validator