HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  idcnop Structured version   Visualization version   GIF version

Theorem idcnop 28224
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
idcnop ( I ↾ ℋ) ∈ ConOp

Proof of Theorem idcnop
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6086 . . 3 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
2 f1of 6050 . . 3 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ⟶ ℋ)
31, 2ax-mp 5 . 2 ( I ↾ ℋ): ℋ⟶ ℋ
4 id 22 . . . 4 (𝑦 ∈ ℝ+𝑦 ∈ ℝ+)
5 fvresi 6344 . . . . . . . . 9 (𝑤 ∈ ℋ → (( I ↾ ℋ)‘𝑤) = 𝑤)
6 fvresi 6344 . . . . . . . . 9 (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥)
75, 6oveqan12rd 6569 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥)) = (𝑤 𝑥))
87fveq2d 6107 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) = (norm‘(𝑤 𝑥)))
98breq1d 4593 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦 ↔ (norm‘(𝑤 𝑥)) < 𝑦))
109biimprd 237 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
1110ralrimiva 2949 . . . 4 (𝑥 ∈ ℋ → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
12 breq2 4587 . . . . . . 7 (𝑧 = 𝑦 → ((norm‘(𝑤 𝑥)) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑦))
1312imbi1d 330 . . . . . 6 (𝑧 = 𝑦 → (((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)))
1413ralbidv 2969 . . . . 5 (𝑧 = 𝑦 → (∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)))
1514rspcev 3282 . . . 4 ((𝑦 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
164, 11, 15syl2anr 494 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
1716rgen2 2958 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)
18 elcnop 28100 . 2 (( I ↾ ℋ) ∈ ConOp ↔ (( I ↾ ℋ): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)))
193, 17, 18mpbir2an 957 1 ( I ↾ ℋ) ∈ ConOp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583   I cid 4948  cres 5040  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549   < clt 9953  +crp 11708  chil 27160  normcno 27164   cmv 27166  ConOpccop 27187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-hilex 27240
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-cnop 28083
This theorem is referenced by:  nmcopex  28272  nmcoplb  28273
  Copyright terms: Public domain W3C validator