Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrn | Structured version Visualization version GIF version |
Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020.) |
Ref | Expression |
---|---|
icoreelrn.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
icoreelrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoreval 32377 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) | |
2 | simpl 472 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
3 | simpr 476 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
4 | df-ico 12052 | . . . . . 6 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | |
5 | 4 | ixxf 12056 | . . . . 5 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
6 | ffun 5961 | . . . . 5 ⊢ ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,)) | |
7 | 5, 6 | mp1i 13 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → Fun [,)) |
8 | rexpssxrxp 9963 | . . . . . 6 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
9 | 5 | fdmi 5965 | . . . . . 6 ⊢ dom [,) = (ℝ* × ℝ*) |
10 | 8, 9 | sseqtr4i 3601 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ dom [,) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ × ℝ) ⊆ dom [,)) |
12 | 2, 3, 7, 11 | elovimad 6591 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ ([,) “ (ℝ × ℝ))) |
13 | icoreelrn.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
14 | 12, 13 | syl6eleqr 2699 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ 𝐼) |
15 | 1, 14 | eqeltrrd 2689 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 ⊆ wss 3540 𝒫 cpw 4108 class class class wbr 4583 × cxp 5036 dom cdm 5038 “ cima 5041 Fun wfun 5798 ⟶wf 5800 (class class class)co 6549 ℝcr 9814 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 [,)cico 12048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-pre-lttri 9889 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-ico 12052 |
This theorem is referenced by: relowlssretop 32387 |
Copyright terms: Public domain | W3C validator |