Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccsuble | Structured version Visualization version GIF version |
Description: An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iccsuble.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
iccsuble.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
iccsuble.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
iccsuble.4 | ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) |
Ref | Expression |
---|---|
iccsuble | ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccsuble.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | iccsuble.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | iccsuble.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
4 | eliccre 38575 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ) | |
5 | 1, 2, 3, 4 | syl3anc 1318 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | iccsuble.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) | |
7 | eliccre 38575 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ) | |
8 | 1, 2, 6, 7 | syl3anc 1318 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
9 | elicc2 12109 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
10 | 1, 2, 9 | syl2anc 691 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
11 | 3, 10 | mpbid 221 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
12 | 11 | simp3d 1068 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
13 | elicc2 12109 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) | |
14 | 1, 2, 13 | syl2anc 691 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) |
15 | 6, 14 | mpbid 221 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵)) |
16 | 15 | simp2d 1067 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
17 | 5, 1, 2, 8, 12, 16 | le2subd 10526 | 1 ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ w3a 1031 ∈ wcel 1977 class class class wbr 4583 (class class class)co 6549 ℝcr 9814 ≤ cle 9954 − cmin 10145 [,]cicc 12049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-icc 12053 |
This theorem is referenced by: fourierdlem6 39006 fourierdlem42 39042 hoidmvlelem1 39485 |
Copyright terms: Public domain | W3C validator |