Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartlt Structured version   Visualization version   GIF version

Theorem iccpartlt 39962
Description: If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 39011 in GS's mathbox. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartlt (𝜑 → (𝑃‘0) < (𝑃𝑀))

Proof of Theorem iccpartlt
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
3 lbfzo0 12375 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ 𝑀 ∈ ℕ)
41, 3sylibr 223 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
5 iccpartimp 39955 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
61, 2, 4, 5syl3anc 1318 . . . . . 6 (𝜑 → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
76simprd 478 . . . . 5 (𝜑 → (𝑃‘0) < (𝑃‘(0 + 1)))
87adantl 481 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘(0 + 1)))
9 fveq2 6103 . . . . . 6 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘1))
10 1e0p1 11428 . . . . . . 7 1 = (0 + 1)
1110fveq2i 6106 . . . . . 6 (𝑃‘1) = (𝑃‘(0 + 1))
129, 11syl6eq 2660 . . . . 5 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘(0 + 1)))
1312adantr 480 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃𝑀) = (𝑃‘(0 + 1)))
148, 13breqtrrd 4611 . . 3 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃𝑀))
1514ex 449 . 2 (𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
161, 2iccpartiltu 39960 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
171, 2iccpartigtl 39961 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
18 1nn 10908 . . . . . . . . . 10 1 ∈ ℕ
1918a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ)
201adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ)
21 df-ne 2782 . . . . . . . . . . 11 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
221nnge1d 10940 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑀)
23 1red 9934 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
241nnred 10912 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
2523, 24ltlend 10061 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑀 ↔ (1 ≤ 𝑀𝑀 ≠ 1)))
2625biimprd 237 . . . . . . . . . . . 12 (𝜑 → ((1 ≤ 𝑀𝑀 ≠ 1) → 1 < 𝑀))
2722, 26mpand 707 . . . . . . . . . . 11 (𝜑 → (𝑀 ≠ 1 → 1 < 𝑀))
2821, 27syl5bir 232 . . . . . . . . . 10 (𝜑 → (¬ 𝑀 = 1 → 1 < 𝑀))
2928imp 444 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 < 𝑀)
30 elfzo1 12385 . . . . . . . . 9 (1 ∈ (1..^𝑀) ↔ (1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀))
3119, 20, 29, 30syl3anbrc 1239 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (1..^𝑀))
32 fveq2 6103 . . . . . . . . . 10 (𝑖 = 1 → (𝑃𝑖) = (𝑃‘1))
3332breq2d 4595 . . . . . . . . 9 (𝑖 = 1 → ((𝑃‘0) < (𝑃𝑖) ↔ (𝑃‘0) < (𝑃‘1)))
3433rspcv 3278 . . . . . . . 8 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3531, 34syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3632breq1d 4593 . . . . . . . . . . 11 (𝑖 = 1 → ((𝑃𝑖) < (𝑃𝑀) ↔ (𝑃‘1) < (𝑃𝑀)))
3736rspcv 3278 . . . . . . . . . 10 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
3831, 37syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
39 nnnn0 11176 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40 0elfz 12305 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
411, 39, 403syl 18 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
421, 2, 41iccpartxr 39957 . . . . . . . . . . . 12 (𝜑 → (𝑃‘0) ∈ ℝ*)
4342adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈ ℝ*)
442adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀))
45 1nn0 11185 . . . . . . . . . . . . . 14 1 ∈ ℕ0
4645a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ0)
471, 39syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
4847adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ0)
4922adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ≤ 𝑀)
50 elfz2nn0 12300 . . . . . . . . . . . . 13 (1 ∈ (0...𝑀) ↔ (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
5146, 48, 49, 50syl3anbrc 1239 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (0...𝑀))
5220, 44, 51iccpartxr 39957 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘1) ∈ ℝ*)
53 nn0fz0 12306 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
5439, 53sylib 207 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (0...𝑀))
561, 2, 55iccpartxr 39957 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑀) ∈ ℝ*)
5756adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃𝑀) ∈ ℝ*)
58 xrlttr 11849 . . . . . . . . . . 11 (((𝑃‘0) ∈ ℝ* ∧ (𝑃‘1) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
5943, 52, 57, 58syl3anc 1318 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑀 = 1) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
6059expcomd 453 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘1) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6138, 60syld 46 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6261com23 84 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘0) < (𝑃‘1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6335, 62syld 46 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6463ex 449 . . . . 5 (𝜑 → (¬ 𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀)))))
6564com24 93 . . . 4 (𝜑 → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))))
6616, 17, 65mp2d 47 . . 3 (𝜑 → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))
6766com12 32 . 2 𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
6815, 67pm2.61i 175 1 (𝜑 → (𝑃‘0) < (𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896   class class class wbr 4583  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cn 10897  0cn0 11169  ...cfz 12197  ..^cfzo 12334  RePartciccp 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-iccp 39952
This theorem is referenced by:  iccpartltu  39963  iccpartgtl  39964  iccpartgt  39965
  Copyright terms: Public domain W3C validator