Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtprec Structured version   Visualization version   GIF version

Theorem iccpartgtprec 39958
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartgtprec.i (𝜑𝐼 ∈ (1...𝑀))
Assertion
Ref Expression
iccpartgtprec (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))

Proof of Theorem iccpartgtprec
StepHypRef Expression
1 iccpartgtprec.m . . . 4 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
3 iccpartgtprec.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑀))
41nnzd 11357 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 fzval3 12404 . . . . . . . 8 (𝑀 ∈ ℤ → (1...𝑀) = (1..^(𝑀 + 1)))
65eleq2d 2673 . . . . . . 7 (𝑀 ∈ ℤ → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
74, 6syl 17 . . . . . 6 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
83, 7mpbid 221 . . . . 5 (𝜑𝐼 ∈ (1..^(𝑀 + 1)))
91nncnd 10913 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
10 pncan1 10333 . . . . . . . . . 10 (𝑀 ∈ ℂ → ((𝑀 + 1) − 1) = 𝑀)
119, 10syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1211eqcomd 2616 . . . . . . . 8 (𝜑𝑀 = ((𝑀 + 1) − 1))
1312oveq2d 6565 . . . . . . 7 (𝜑 → (0..^𝑀) = (0..^((𝑀 + 1) − 1)))
1413eleq2d 2673 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
15 elfzelz 12213 . . . . . . . 8 (𝐼 ∈ (1...𝑀) → 𝐼 ∈ ℤ)
163, 15syl 17 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
174peano2zd 11361 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
18 elfzom1b 12433 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ) → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
1916, 17, 18syl2anc 691 . . . . . 6 (𝜑 → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
2014, 19bitr4d 270 . . . . 5 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
218, 20mpbird 246 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^𝑀))
22 iccpartimp 39955 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ (𝐼 − 1) ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
231, 2, 21, 22syl3anc 1318 . . 3 (𝜑 → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
2423simprd 478 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1)))
2516zcnd 11359 . . . . 5 (𝜑𝐼 ∈ ℂ)
26 npcan1 10334 . . . . 5 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
2725, 26syl 17 . . . 4 (𝜑 → ((𝐼 − 1) + 1) = 𝐼)
2827eqcomd 2616 . . 3 (𝜑𝐼 = ((𝐼 − 1) + 1))
2928fveq2d 6107 . 2 (𝜑 → (𝑃𝐼) = (𝑃‘((𝐼 − 1) + 1)))
3024, 29breqtrrd 4611 1 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cmin 10145  cn 10897  cz 11254  ...cfz 12197  ..^cfzo 12334  RePartciccp 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-iccp 39952
This theorem is referenced by:  iccpartipre  39959  iccpartiltu  39960
  Copyright terms: Public domain W3C validator