Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccllyscon Structured version   Visualization version   GIF version

Theorem iccllyscon 30486
 Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
iccllyscon ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SCon)

Proof of Theorem iccllyscon
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 790 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑥 ∈ (topGen‘ran (,)))
2 inss1 3795 . . . . . 6 (𝑥 ∩ (𝐴[,]𝐵)) ⊆ 𝑥
3 simprr 792 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))
42, 3sseldi 3566 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦𝑥)
5 tg2 20580 . . . . 5 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
61, 4, 5syl2anc 691 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
7 ioof 12142 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8 ffn 5958 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
9 ovelrn 6708 . . . . . . . 8 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
107, 8, 9mp2b 10 . . . . . . 7 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
11 inss1 3795 . . . . . . . . . . . 12 (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑧
12 simprrr 801 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧𝑥)
1311, 12syl5ss 3579 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥)
14 simprrl 800 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑦𝑧)
15 simprl 790 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 = (𝑎(,)𝑏))
1615ineq1d 3775 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) = ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
1716oveq2d 6565 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
18 iooscon 30483 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SCon
19 ioossre 12106 . . . . . . . . . . . . . . . . 17 (𝑎(,)𝑏) ⊆ ℝ
20 eqid 2610 . . . . . . . . . . . . . . . . . . 19 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏))
2120rescon 30482 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SCon ↔ ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Con))
22 reconn 22439 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Con ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2321, 22bitrd 267 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SCon ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2419, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SCon ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
2518, 24mpbi 219 . . . . . . . . . . . . . . 15 𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)
26 inss1 3795 . . . . . . . . . . . . . . . 16 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏)
27 ssralv 3629 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2827ralimdv 2946 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
29 ssralv 3629 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3028, 29syld 46 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3126, 30ax-mp 5 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
3225, 31mp1i 13 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
33 inss2 3796 . . . . . . . . . . . . . . 15 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵)
34 iccconn 22441 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Con)
35 iccssre 12126 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
36 reconn 22439 . . . . . . . . . . . . . . . . . 18 ((𝐴[,]𝐵) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Con ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Con ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3834, 37mpbid 221 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
3938ad2antrr 758 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
40 ssralv 3629 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4140ralimdv 2946 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
42 ssralv 3629 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4341, 42syld 46 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4433, 39, 43mpsyl 66 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
45 ssin 3797 . . . . . . . . . . . . . . . 16 (((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
46452ralbii 2964 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
47 r19.26-2 3047 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4846, 47bitr3i 265 . . . . . . . . . . . . . 14 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4932, 44, 48sylanbrc 695 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5026, 19sstri 3577 . . . . . . . . . . . . . 14 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ
51 eqid 2610 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5251rescon 30482 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SCon ↔ ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Con))
53 reconn 22439 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Con ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5452, 53bitrd 267 . . . . . . . . . . . . . 14 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SCon ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5550, 54ax-mp 5 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SCon ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5649, 55sylibr 223 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SCon)
5717, 56eqeltrd 2688 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon)
5813, 14, 573jca 1235 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))
5958exp32 629 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))))
6059rexlimdvw 3016 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))))
6160rexlimdvw 3016 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))))
6210, 61syl5bi 231 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 ∈ ran (,) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))))
6362reximdvai 2998 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon)))
64 retopbas 22374 . . . . . 6 ran (,) ∈ TopBases
65 bastg 20581 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
66 ssrexv 3630 . . . . . 6 (ran (,) ⊆ (topGen‘ran (,)) → (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon)))
6764, 65, 66mp2b 10 . . . . 5 (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))
6863, 67syl6 34 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon)))
696, 68mpd 15 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))
7069ralrimivva 2954 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))
71 retop 22375 . . 3 (topGen‘ran (,)) ∈ Top
72 ovex 6577 . . 3 (𝐴[,]𝐵) ∈ V
73 subislly 21094 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SCon ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon)))
7471, 72, 73mp2an 704 . 2 (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SCon ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SCon))
7570, 74sylibr 223 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SCon)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108   × cxp 5036  ran crn 5039   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  ℝ*cxr 9952  (,)cioo 12046  [,]cicc 12049   ↾t crest 15904  topGenctg 15921  Topctop 20517  TopBasesctb 20520  Conccon 21024  Locally clly 21077  SConcscon 30456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-cnp 20842  df-con 21025  df-lly 21079  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-htpy 22577  df-phtpy 22578  df-phtpc 22599  df-pcon 30457  df-scon 30458 This theorem is referenced by:  iillyscon  30489
 Copyright terms: Public domain W3C validator