Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpart Structured version   Visualization version   GIF version

Theorem icceuelpart 39974
Description: An element of a partitioned half opened interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpart ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem icceuelpart
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
21adantr 480 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → 𝑃 ∈ (RePart‘𝑀))
3 iccpartiun.m . . . . 5 (𝜑𝑀 ∈ ℕ)
4 iccelpart 39971 . . . . 5 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
53, 4syl 17 . . . 4 (𝜑 → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
65adantr 480 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
7 fveq1 6102 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
8 fveq1 6102 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
97, 8oveq12d 6567 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
109eleq2d 2673 . . . . . . 7 (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
11 fveq1 6102 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
12 fveq1 6102 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
1311, 12oveq12d 6567 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1413eleq2d 2673 . . . . . . . 8 (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514rexbidv 3034 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1610, 15imbi12d 333 . . . . . 6 (𝑝 = 𝑃 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1716rspcva 3280 . . . . 5 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1817adantld 482 . . . 4 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1918com12 32 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
202, 6, 19mp2and 711 . 2 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
213adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
221adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
23 elfzofz 12354 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2423adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
2521, 22, 24iccpartxr 39957 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ∈ ℝ*)
26 fzofzp1 12431 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
2821, 22, 27iccpartxr 39957 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
2925, 28jca 553 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*))
3029adantrr 749 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*))
31 elico1 12089 . . . . . . 7 (((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1)))))
3230, 31syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1)))))
333adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
341adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
35 elfzofz 12354 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
3733, 34, 36iccpartxr 39957 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑃𝑗) ∈ ℝ*)
38 fzofzp1 12431 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
3938adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
4033, 34, 39iccpartxr 39957 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
4137, 40jca 553 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*))
4241adantrl 748 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*))
43 elico1 12089 . . . . . . 7 (((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))))
4442, 43syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))))
4532, 44anbi12d 743 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) ↔ ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))))))
46 elfzoelz 12339 . . . . . . . . . 10 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
4746zred 11358 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
48 elfzoelz 12339 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ)
4948zred 11358 . . . . . . . . 9 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
5047, 49anim12i 588 . . . . . . . 8 ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ))
5150adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ))
52 lttri4 10001 . . . . . . 7 ((𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
5351, 52syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
543, 1icceuelpartlem 39973 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 < 𝑗 → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗))))
5554imp31 447 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗))
56 simpl 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → 𝑋 ∈ ℝ*)
5728adantrr 749 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
5937adantrl 748 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃𝑗) ∈ ℝ*)
6059adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃𝑗) ∈ ℝ*)
61 nltle2tri 39942 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑃𝑗) ∈ ℝ*) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋))
6256, 58, 60, 61syl3anc 1318 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋))
6362pm2.21d 117 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋) → 𝑖 = 𝑗))
64633expd 1276 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗))))
6564ex 449 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℝ* → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗)))))
6665com23 84 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗)))))
6766com25 97 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℝ* → ((𝑃𝑗) ≤ 𝑋 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗)))))
6867imp4b 611 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗)))
6968com23 84 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
70693adant3 1074 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
7170com12 32 . . . . . . . . . . . 12 (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
72713ad2ant3 1077 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
7372imp 444 . . . . . . . . . 10 (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗))
7473com12 32 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
7555, 74syldan 486 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
7675expcom 450 . . . . . . 7 (𝑖 < 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
77 2a1 28 . . . . . . 7 (𝑖 = 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
783, 1icceuelpartlem 39973 . . . . . . . . . . 11 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))))
7978ancomsd 469 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))))
8079imp31 447 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))
8140adantrl 748 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
8281adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
8325adantrr 749 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃𝑖) ∈ ℝ*)
8483adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃𝑖) ∈ ℝ*)
85 nltle2tri 39942 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ* ∧ (𝑃𝑖) ∈ ℝ*) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋))
8656, 82, 84, 85syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋))
8786pm2.21d 117 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋) → 𝑖 = 𝑗))
88873expd 1276 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗))))
8988ex 449 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))))
9089com23 84 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℝ* → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))))
9190imp4b 611 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ*𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))
9291com23 84 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ*𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
93923adant2 1073 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
9493com12 32 . . . . . . . . . . . 12 ((𝑃𝑖) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
95943ad2ant2 1076 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
9695imp 444 . . . . . . . . . 10 (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗))
9796com12 32 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
9880, 97syldan 486 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
9998expcom 450 . . . . . . 7 (𝑗 < 𝑖 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
10076, 77, 993jaoi 1383 . . . . . 6 ((𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
10153, 100mpcom 37 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
10245, 101sylbid 229 . . . 4 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
103102ralrimivva 2954 . . 3 (𝜑 → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
104103adantr 480 . 2 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
105 fveq2 6103 . . . . 5 (𝑖 = 𝑗 → (𝑃𝑖) = (𝑃𝑗))
106 oveq1 6556 . . . . . 6 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
107106fveq2d 6107 . . . . 5 (𝑖 = 𝑗 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑗 + 1)))
108105, 107oveq12d 6567 . . . 4 (𝑖 = 𝑗 → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) = ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))))
109108eleq2d 2673 . . 3 (𝑖 = 𝑗 → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))))
110109reu4 3367 . 2 (∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
11120, 104, 110sylanbrc 695 1 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cn 10897  [,)cico 12048  ...cfz 12197  ..^cfzo 12334  RePartciccp 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-ico 12052  df-fz 12198  df-fzo 12335  df-iccp 39952
This theorem is referenced by:  iccpartdisj  39975
  Copyright terms: Public domain W3C validator