MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmul Structured version   Visualization version   GIF version

Theorem i1fmul 23269
Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmul (𝜑 → (𝐹𝑓 · 𝐺) ∈ dom ∫1)

Proof of Theorem i1fmul
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 9900 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
3 i1fadd.1 . . . 4 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 23249 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . 3 (𝜑𝐹:ℝ⟶ℝ)
6 i1fadd.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 23249 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . 3 (𝜑𝐺:ℝ⟶ℝ)
9 reex 9906 . . . 4 ℝ ∈ V
109a1i 11 . . 3 (𝜑 → ℝ ∈ V)
11 inidm 3784 . . 3 (ℝ ∩ ℝ) = ℝ
122, 5, 8, 10, 10, 11off 6810 . 2 (𝜑 → (𝐹𝑓 · 𝐺):ℝ⟶ℝ)
13 i1frn 23250 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
143, 13syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
15 i1frn 23250 . . . . . 6 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
166, 15syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ Fin)
17 xpfi 8116 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
1814, 16, 17syl2anc 691 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
19 eqid 2610 . . . . . 6 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))
20 ovex 6577 . . . . . 6 (𝑢 · 𝑣) ∈ V
2119, 20fnmpt2i 7128 . . . . 5 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺)
22 dffn4 6034 . . . . 5 ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)))
2321, 22mpbi 219 . . . 4 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))
24 fofi 8135 . . . 4 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin)
2518, 23, 24sylancl 693 . . 3 (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin)
26 eqid 2610 . . . . . . . . 9 (𝑥 · 𝑦) = (𝑥 · 𝑦)
27 rspceov 6590 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ (𝑥 · 𝑦) = (𝑥 · 𝑦)) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
2826, 27mp3an3 1405 . . . . . . . 8 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
29 ovex 6577 . . . . . . . . 9 (𝑥 · 𝑦) ∈ V
30 eqeq1 2614 . . . . . . . . . 10 (𝑤 = (𝑥 · 𝑦) → (𝑤 = (𝑢 · 𝑣) ↔ (𝑥 · 𝑦) = (𝑢 · 𝑣)))
31302rexbidv 3039 . . . . . . . . 9 (𝑤 = (𝑥 · 𝑦) → (∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣) ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣)))
3229, 31elab 3319 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
3328, 32sylibr 223 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
3433adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
35 ffn 5958 . . . . . . . 8 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
365, 35syl 17 . . . . . . 7 (𝜑𝐹 Fn ℝ)
37 dffn3 5967 . . . . . . 7 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
3836, 37sylib 207 . . . . . 6 (𝜑𝐹:ℝ⟶ran 𝐹)
39 ffn 5958 . . . . . . . 8 (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ)
408, 39syl 17 . . . . . . 7 (𝜑𝐺 Fn ℝ)
41 dffn3 5967 . . . . . . 7 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
4240, 41sylib 207 . . . . . 6 (𝜑𝐺:ℝ⟶ran 𝐺)
4334, 38, 42, 10, 10, 11off 6810 . . . . 5 (𝜑 → (𝐹𝑓 · 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
44 frn 5966 . . . . 5 ((𝐹𝑓 · 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)} → ran (𝐹𝑓 · 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
4543, 44syl 17 . . . 4 (𝜑 → ran (𝐹𝑓 · 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
4619rnmpt2 6668 . . . 4 ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)}
4745, 46syl6sseqr 3615 . . 3 (𝜑 → ran (𝐹𝑓 · 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)))
48 ssfi 8065 . . 3 ((ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin ∧ ran (𝐹𝑓 · 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))) → ran (𝐹𝑓 · 𝐺) ∈ Fin)
4925, 47, 48syl2anc 691 . 2 (𝜑 → ran (𝐹𝑓 · 𝐺) ∈ Fin)
50 frn 5966 . . . . . . . 8 ((𝐹𝑓 · 𝐺):ℝ⟶ℝ → ran (𝐹𝑓 · 𝐺) ⊆ ℝ)
5112, 50syl 17 . . . . . . 7 (𝜑 → ran (𝐹𝑓 · 𝐺) ⊆ ℝ)
52 ax-resscn 9872 . . . . . . 7 ℝ ⊆ ℂ
5351, 52syl6ss 3580 . . . . . 6 (𝜑 → ran (𝐹𝑓 · 𝐺) ⊆ ℂ)
5453ssdifd 3708 . . . . 5 (𝜑 → (ran (𝐹𝑓 · 𝐺) ∖ {0}) ⊆ (ℂ ∖ {0}))
5554sselda 3568 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
563, 6i1fmullem 23267 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → ((𝐹𝑓 · 𝐺) “ {𝑦}) = 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))
5755, 56syldan 486 . . 3 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → ((𝐹𝑓 · 𝐺) “ {𝑦}) = 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))
58 difss 3699 . . . . . 6 (ran 𝐺 ∖ {0}) ⊆ ran 𝐺
59 ssfi 8065 . . . . . 6 ((ran 𝐺 ∈ Fin ∧ (ran 𝐺 ∖ {0}) ⊆ ran 𝐺) → (ran 𝐺 ∖ {0}) ∈ Fin)
6016, 58, 59sylancl 693 . . . . 5 (𝜑 → (ran 𝐺 ∖ {0}) ∈ Fin)
61 i1fima 23251 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol)
623, 61syl 17 . . . . . . 7 (𝜑 → (𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol)
63 i1fima 23251 . . . . . . . 8 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
646, 63syl 17 . . . . . . 7 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
65 inmbl 23117 . . . . . . 7 (((𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6662, 64, 65syl2anc 691 . . . . . 6 (𝜑 → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6766ralrimivw 2950 . . . . 5 (𝜑 → ∀𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
68 finiunmbl 23119 . . . . 5 (((ran 𝐺 ∖ {0}) ∈ Fin ∧ ∀𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol) → 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6960, 67, 68syl2anc 691 . . . 4 (𝜑 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7069adantr 480 . . 3 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7157, 70eqeltrd 2688 . 2 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → ((𝐹𝑓 · 𝐺) “ {𝑦}) ∈ dom vol)
72 mblvol 23105 . . . 4 (((𝐹𝑓 · 𝐺) “ {𝑦}) ∈ dom vol → (vol‘((𝐹𝑓 · 𝐺) “ {𝑦})) = (vol*‘((𝐹𝑓 · 𝐺) “ {𝑦})))
7371, 72syl 17 . . 3 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → (vol‘((𝐹𝑓 · 𝐺) “ {𝑦})) = (vol*‘((𝐹𝑓 · 𝐺) “ {𝑦})))
74 mblss 23106 . . . . 5 (((𝐹𝑓 · 𝐺) “ {𝑦}) ∈ dom vol → ((𝐹𝑓 · 𝐺) “ {𝑦}) ⊆ ℝ)
7571, 74syl 17 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → ((𝐹𝑓 · 𝐺) “ {𝑦}) ⊆ ℝ)
7660adantr 480 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → (ran 𝐺 ∖ {0}) ∈ Fin)
77 inss2 3796 . . . . . . 7 ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
7877a1i 11 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}))
7964ad2antrr 758 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ∈ dom vol)
80 mblss 23106 . . . . . . 7 ((𝐺 “ {𝑧}) ∈ dom vol → (𝐺 “ {𝑧}) ⊆ ℝ)
8179, 80syl 17 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ⊆ ℝ)
82 mblvol 23105 . . . . . . . 8 ((𝐺 “ {𝑧}) ∈ dom vol → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
8379, 82syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
846adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → 𝐺 ∈ dom ∫1)
85 i1fima2sn 23253 . . . . . . . 8 ((𝐺 ∈ dom ∫1𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
8684, 85sylan 487 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
8783, 86eqeltrrd 2689 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐺 “ {𝑧})) ∈ ℝ)
88 ovolsscl 23061 . . . . . 6 ((((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}) ∧ (𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑧})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8978, 81, 87, 88syl3anc 1318 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
9076, 89fsumrecl 14312 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
9157fveq2d 6107 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → (vol*‘((𝐹𝑓 · 𝐺) “ {𝑦})) = (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
92 mblss 23106 . . . . . . . . . 10 (((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
9366, 92syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
9493ad2antrr 758 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
9594, 89jca 553 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
9695ralrimiva 2949 . . . . . 6 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → ∀𝑧 ∈ (ran 𝐺 ∖ {0})(((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
97 ovolfiniun 23076 . . . . . 6 (((ran 𝐺 ∖ {0}) ∈ Fin ∧ ∀𝑧 ∈ (ran 𝐺 ∖ {0})(((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)) → (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
9876, 96, 97syl2anc 691 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
9991, 98eqbrtrd 4605 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → (vol*‘((𝐹𝑓 · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
100 ovollecl 23058 . . . 4 ((((𝐹𝑓 · 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘((𝐹𝑓 · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))) → (vol*‘((𝐹𝑓 · 𝐺) “ {𝑦})) ∈ ℝ)
10175, 90, 99, 100syl3anc 1318 . . 3 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → (vol*‘((𝐹𝑓 · 𝐺) “ {𝑦})) ∈ ℝ)
10273, 101eqeltrd 2688 . 2 ((𝜑𝑦 ∈ (ran (𝐹𝑓 · 𝐺) ∖ {0})) → (vol‘((𝐹𝑓 · 𝐺) “ {𝑦})) ∈ ℝ)
10312, 49, 71, 102i1fd 23254 1 (𝜑 → (𝐹𝑓 · 𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cin 3539  wss 3540  {csn 4125   ciun 4455   class class class wbr 4583   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑓 cof 6793  Fincfn 7841  cc 9813  cr 9814  0cc0 9815   · cmul 9820  cle 9954   / cdiv 10563  Σcsu 14264  vol*covol 23038  volcvol 23039  1citg1 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195
This theorem is referenced by:  mbfmullem2  23297  ftc1anclem3  32657
  Copyright terms: Public domain W3C validator