MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fd Structured version   Visualization version   GIF version

Theorem i1fd 23254
Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fd.1 (𝜑𝐹:ℝ⟶ℝ)
i1fd.2 (𝜑 → ran 𝐹 ∈ Fin)
i1fd.3 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
i1fd.4 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
Assertion
Ref Expression
i1fd (𝜑𝐹 ∈ dom ∫1)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥

Proof of Theorem i1fd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1fd.1 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
21ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → 𝐹:ℝ⟶ℝ)
3 ffun 5961 . . . . . . . 8 (𝐹:ℝ⟶ℝ → Fun 𝐹)
4 funcnvcnv 5870 . . . . . . . 8 (Fun 𝐹 → Fun 𝐹)
5 imadif 5887 . . . . . . . 8 (Fun 𝐹 → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))))
62, 3, 4, 54syl 19 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))))
7 ioof 12142 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8 frn 5966 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ)
97, 8ax-mp 5 . . . . . . . . . . . 12 ran (,) ⊆ 𝒫 ℝ
109sseli 3564 . . . . . . . . . . 11 (𝑥 ∈ ran (,) → 𝑥 ∈ 𝒫 ℝ)
1110elpwid 4118 . . . . . . . . . 10 (𝑥 ∈ ran (,) → 𝑥 ⊆ ℝ)
1211ad2antlr 759 . . . . . . . . 9 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → 𝑥 ⊆ ℝ)
13 dfss4 3820 . . . . . . . . 9 (𝑥 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝑥)) = 𝑥)
1412, 13sylib 207 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (ℝ ∖ (ℝ ∖ 𝑥)) = 𝑥)
1514imaeq2d 5385 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = (𝐹𝑥))
166, 15eqtr3d 2646 . . . . . 6 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) = (𝐹𝑥))
17 fimacnv 6255 . . . . . . . . 9 (𝐹:ℝ⟶ℝ → (𝐹 “ ℝ) = ℝ)
182, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ ℝ) = ℝ)
19 rembl 23115 . . . . . . . 8 ℝ ∈ dom vol
2018, 19syl6eqel 2696 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ ℝ) ∈ dom vol)
211adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝐹:ℝ⟶ℝ)
22 inpreima 6250 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ (𝑦 ∩ ran 𝐹)) = ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)))
23 iunid 4511 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥} = (𝑦 ∩ ran 𝐹)
2423imaeq2i 5383 . . . . . . . . . . . . . . 15 (𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥}) = (𝐹 “ (𝑦 ∩ ran 𝐹))
25 imaiun 6407 . . . . . . . . . . . . . . 15 (𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥}) = 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})
2624, 25eqtr3i 2634 . . . . . . . . . . . . . 14 (𝐹 “ (𝑦 ∩ ran 𝐹)) = 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})
27 cnvimass 5404 . . . . . . . . . . . . . . . 16 (𝐹𝑦) ⊆ dom 𝐹
28 cnvimarndm 5405 . . . . . . . . . . . . . . . 16 (𝐹 “ ran 𝐹) = dom 𝐹
2927, 28sseqtr4i 3601 . . . . . . . . . . . . . . 15 (𝐹𝑦) ⊆ (𝐹 “ ran 𝐹)
30 df-ss 3554 . . . . . . . . . . . . . . 15 ((𝐹𝑦) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝑦))
3129, 30mpbi 219 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝑦)
3222, 26, 313eqtr3g 2667 . . . . . . . . . . . . 13 (Fun 𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) = (𝐹𝑦))
3321, 3, 323syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) = (𝐹𝑦))
34 i1fd.2 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ∈ Fin)
3534adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ran 𝐹 ∈ Fin)
36 inss2 3796 . . . . . . . . . . . . . 14 (𝑦 ∩ ran 𝐹) ⊆ ran 𝐹
37 ssfi 8065 . . . . . . . . . . . . . 14 ((ran 𝐹 ∈ Fin ∧ (𝑦 ∩ ran 𝐹) ⊆ ran 𝐹) → (𝑦 ∩ ran 𝐹) ∈ Fin)
3835, 36, 37sylancl 693 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝑦 ∩ ran 𝐹) ∈ Fin)
39 simpll 786 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → 𝜑)
40 inss1 3795 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∩ ran 𝐹) ⊆ 𝑦
4140sseli 3564 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ (𝑦 ∩ ran 𝐹) → 0 ∈ 𝑦)
4241con3i 149 . . . . . . . . . . . . . . . . . . 19 (¬ 0 ∈ 𝑦 → ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
4342adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
44 disjsn 4192 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
4543, 44sylibr 223 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅)
46 reldisj 3972 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∩ ran 𝐹) ⊆ ran 𝐹 → (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0})))
4736, 46ax-mp 5 . . . . . . . . . . . . . . . . 17 (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0}))
4845, 47sylib 207 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0}))
4948sselda 3568 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → 𝑥 ∈ (ran 𝐹 ∖ {0}))
50 i1fd.3 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
5139, 49, 50syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (𝐹 “ {𝑥}) ∈ dom vol)
5251ralrimiva 2949 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
53 finiunmbl 23119 . . . . . . . . . . . . 13 (((𝑦 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
5438, 52, 53syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
5533, 54eqeltrrd 2689 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝐹𝑦) ∈ dom vol)
5655ex 449 . . . . . . . . . 10 (𝜑 → (¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
5756alrimiv 1842 . . . . . . . . 9 (𝜑 → ∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
5857ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
59 elndif 3696 . . . . . . . . 9 (0 ∈ 𝑥 → ¬ 0 ∈ (ℝ ∖ 𝑥))
6059adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ¬ 0 ∈ (ℝ ∖ 𝑥))
61 reex 9906 . . . . . . . . . 10 ℝ ∈ V
62 difexg 4735 . . . . . . . . . 10 (ℝ ∈ V → (ℝ ∖ 𝑥) ∈ V)
6361, 62ax-mp 5 . . . . . . . . 9 (ℝ ∖ 𝑥) ∈ V
64 eleq2 2677 . . . . . . . . . . 11 (𝑦 = (ℝ ∖ 𝑥) → (0 ∈ 𝑦 ↔ 0 ∈ (ℝ ∖ 𝑥)))
6564notbid 307 . . . . . . . . . 10 (𝑦 = (ℝ ∖ 𝑥) → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ (ℝ ∖ 𝑥)))
66 imaeq2 5381 . . . . . . . . . . 11 (𝑦 = (ℝ ∖ 𝑥) → (𝐹𝑦) = (𝐹 “ (ℝ ∖ 𝑥)))
6766eleq1d 2672 . . . . . . . . . 10 (𝑦 = (ℝ ∖ 𝑥) → ((𝐹𝑦) ∈ dom vol ↔ (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol))
6865, 67imbi12d 333 . . . . . . . . 9 (𝑦 = (ℝ ∖ 𝑥) → ((¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) ↔ (¬ 0 ∈ (ℝ ∖ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol)))
6963, 68spcv 3272 . . . . . . . 8 (∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) → (¬ 0 ∈ (ℝ ∖ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol))
7058, 60, 69sylc 63 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol)
71 difmbl 23118 . . . . . . 7 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) ∈ dom vol)
7220, 70, 71syl2anc 691 . . . . . 6 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) ∈ dom vol)
7316, 72eqeltrrd 2689 . . . . 5 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
74 eleq2 2677 . . . . . . . . . . 11 (𝑦 = 𝑥 → (0 ∈ 𝑦 ↔ 0 ∈ 𝑥))
7574notbid 307 . . . . . . . . . 10 (𝑦 = 𝑥 → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ 𝑥))
76 imaeq2 5381 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7776eleq1d 2672 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ dom vol ↔ (𝐹𝑥) ∈ dom vol))
7875, 77imbi12d 333 . . . . . . . . 9 (𝑦 = 𝑥 → ((¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) ↔ (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol)))
7978spv 2248 . . . . . . . 8 (∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) → (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol))
8057, 79syl 17 . . . . . . 7 (𝜑 → (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol))
8180imp 444 . . . . . 6 ((𝜑 ∧ ¬ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
8281adantlr 747 . . . . 5 (((𝜑𝑥 ∈ ran (,)) ∧ ¬ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
8373, 82pm2.61dan 828 . . . 4 ((𝜑𝑥 ∈ ran (,)) → (𝐹𝑥) ∈ dom vol)
8483ralrimiva 2949 . . 3 (𝜑 → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
85 ismbf 23203 . . . 4 (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
861, 85syl 17 . . 3 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
8784, 86mpbird 246 . 2 (𝜑𝐹 ∈ MblFn)
88 mblvol 23105 . . . . . . . 8 ((𝐹𝑦) ∈ dom vol → (vol‘(𝐹𝑦)) = (vol*‘(𝐹𝑦)))
8955, 88syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol‘(𝐹𝑦)) = (vol*‘(𝐹𝑦)))
90 mblss 23106 . . . . . . . . 9 ((𝐹𝑦) ∈ dom vol → (𝐹𝑦) ⊆ ℝ)
9155, 90syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝐹𝑦) ⊆ ℝ)
92 mblvol 23105 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) ∈ dom vol → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
9351, 92syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
94 i1fd.4 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
9539, 49, 94syl2anc 691 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
9693, 95eqeltrrd 2689 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol*‘(𝐹 “ {𝑥})) ∈ ℝ)
9738, 96fsumrecl 14312 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})) ∈ ℝ)
9833fveq2d 6107 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) = (vol*‘(𝐹𝑦)))
99 mblss 23106 . . . . . . . . . . . . 13 ((𝐹 “ {𝑥}) ∈ dom vol → (𝐹 “ {𝑥}) ⊆ ℝ)
10051, 99syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (𝐹 “ {𝑥}) ⊆ ℝ)
101100, 96jca 553 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → ((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ))
102101ralrimiva 2949 . . . . . . . . . 10 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ))
103 ovolfiniun 23076 . . . . . . . . . 10 (((𝑦 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ)) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
10438, 102, 103syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
10598, 104eqbrtrrd 4607 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘(𝐹𝑦)) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
106 ovollecl 23058 . . . . . . . 8 (((𝐹𝑦) ⊆ ℝ ∧ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})) ∈ ℝ ∧ (vol*‘(𝐹𝑦)) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥}))) → (vol*‘(𝐹𝑦)) ∈ ℝ)
10791, 97, 105, 106syl3anc 1318 . . . . . . 7 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘(𝐹𝑦)) ∈ ℝ)
10889, 107eqeltrd 2688 . . . . . 6 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol‘(𝐹𝑦)) ∈ ℝ)
109108ex 449 . . . . 5 (𝜑 → (¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ))
110109alrimiv 1842 . . . 4 (𝜑 → ∀𝑦(¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ))
111 neldifsn 4262 . . . 4 ¬ 0 ∈ (ℝ ∖ {0})
112 difexg 4735 . . . . . 6 (ℝ ∈ V → (ℝ ∖ {0}) ∈ V)
11361, 112ax-mp 5 . . . . 5 (ℝ ∖ {0}) ∈ V
114 eleq2 2677 . . . . . . 7 (𝑦 = (ℝ ∖ {0}) → (0 ∈ 𝑦 ↔ 0 ∈ (ℝ ∖ {0})))
115114notbid 307 . . . . . 6 (𝑦 = (ℝ ∖ {0}) → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ (ℝ ∖ {0})))
116 imaeq2 5381 . . . . . . . 8 (𝑦 = (ℝ ∖ {0}) → (𝐹𝑦) = (𝐹 “ (ℝ ∖ {0})))
117116fveq2d 6107 . . . . . . 7 (𝑦 = (ℝ ∖ {0}) → (vol‘(𝐹𝑦)) = (vol‘(𝐹 “ (ℝ ∖ {0}))))
118117eleq1d 2672 . . . . . 6 (𝑦 = (ℝ ∖ {0}) → ((vol‘(𝐹𝑦)) ∈ ℝ ↔ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
119115, 118imbi12d 333 . . . . 5 (𝑦 = (ℝ ∖ {0}) → ((¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ) ↔ (¬ 0 ∈ (ℝ ∖ {0}) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
120113, 119spcv 3272 . . . 4 (∀𝑦(¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ) → (¬ 0 ∈ (ℝ ∖ {0}) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
121110, 111, 120mpisyl 21 . . 3 (𝜑 → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
1221, 34, 1213jca 1235 . 2 (𝜑 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
123 isi1f 23247 . 2 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
12487, 122, 123sylanbrc 695 1 (𝜑𝐹 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   ciun 4455   class class class wbr 4583   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798  wf 5800  cfv 5804  Fincfn 7841  cr 9814  0cc0 9815  *cxr 9952  cle 9954  (,)cioo 12046  Σcsu 14264  vol*covol 23038  volcvol 23039  MblFncmbf 23189  1citg1 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195
This theorem is referenced by:  i1f0  23260  i1f1  23263  i1fadd  23268  i1fmul  23269  i1fmulc  23276  i1fres  23278  mbfi1fseqlem4  23291  itg2addnclem2  32632  ftc1anclem3  32657
  Copyright terms: Public domain W3C validator