Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1f1 Structured version   Visualization version   GIF version

Theorem i1f1 23263
 Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
i1f1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem i1f1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1f1.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
21i1f1lem 23262 . . . . 5 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
32simpli 473 . . . 4 𝐹:ℝ⟶{0, 1}
4 0re 9919 . . . . 5 0 ∈ ℝ
5 1re 9918 . . . . 5 1 ∈ ℝ
6 prssi 4293 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
74, 5, 6mp2an 704 . . . 4 {0, 1} ⊆ ℝ
8 fss 5969 . . . 4 ((𝐹:ℝ⟶{0, 1} ∧ {0, 1} ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
93, 7, 8mp2an 704 . . 3 𝐹:ℝ⟶ℝ
109a1i 11 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶ℝ)
11 prfi 8120 . . 3 {0, 1} ∈ Fin
12 1ex 9914 . . . . . . . 8 1 ∈ V
1312prid2 4242 . . . . . . 7 1 ∈ {0, 1}
14 c0ex 9913 . . . . . . . 8 0 ∈ V
1514prid1 4241 . . . . . . 7 0 ∈ {0, 1}
1613, 15keepel 4105 . . . . . 6 if(𝑥𝐴, 1, 0) ∈ {0, 1}
1716a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ {0, 1})
1817, 1fmptd 6292 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶{0, 1})
19 frn 5966 . . . 4 (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1})
2018, 19syl 17 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ⊆ {0, 1})
21 ssfi 8065 . . 3 (({0, 1} ∈ Fin ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ∈ Fin)
2211, 20, 21sylancr 694 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ∈ Fin)
233, 19ax-mp 5 . . . . . . . . . . 11 ran 𝐹 ⊆ {0, 1}
24 df-pr 4128 . . . . . . . . . . . 12 {0, 1} = ({0} ∪ {1})
2524equncomi 3721 . . . . . . . . . . 11 {0, 1} = ({1} ∪ {0})
2623, 25sseqtri 3600 . . . . . . . . . 10 ran 𝐹 ⊆ ({1} ∪ {0})
27 ssdif 3707 . . . . . . . . . 10 (ran 𝐹 ⊆ ({1} ∪ {0}) → (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0}))
2826, 27ax-mp 5 . . . . . . . . 9 (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0})
29 difun2 4000 . . . . . . . . . 10 (({1} ∪ {0}) ∖ {0}) = ({1} ∖ {0})
30 difss 3699 . . . . . . . . . 10 ({1} ∖ {0}) ⊆ {1}
3129, 30eqsstri 3598 . . . . . . . . 9 (({1} ∪ {0}) ∖ {0}) ⊆ {1}
3228, 31sstri 3577 . . . . . . . 8 (ran 𝐹 ∖ {0}) ⊆ {1}
3332sseli 3564 . . . . . . 7 (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ∈ {1})
34 elsni 4142 . . . . . . 7 (𝑦 ∈ {1} → 𝑦 = 1)
3533, 34syl 17 . . . . . 6 (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 = 1)
3635sneqd 4137 . . . . 5 (𝑦 ∈ (ran 𝐹 ∖ {0}) → {𝑦} = {1})
3736imaeq2d 5385 . . . 4 (𝑦 ∈ (ran 𝐹 ∖ {0}) → (𝐹 “ {𝑦}) = (𝐹 “ {1}))
382simpri 477 . . . . 5 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
3938adantr 480 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐹 “ {1}) = 𝐴)
4037, 39sylan9eqr 2666 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑦}) = 𝐴)
41 simpll 786 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ dom vol)
4240, 41eqeltrd 2688 . 2 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑦}) ∈ dom vol)
4340fveq2d 6107 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) = (vol‘𝐴))
44 simplr 788 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘𝐴) ∈ ℝ)
4543, 44eqeltrd 2688 . 2 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
4610, 22, 42, 45i1fd 23254 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537   ∪ cun 3538   ⊆ wss 3540  ifcif 4036  {csn 4125  {cpr 4127   ↦ cmpt 4643  ◡ccnv 5037  dom cdm 5038  ran crn 5039   “ cima 5041  ⟶wf 5800  ‘cfv 5804  Fincfn 7841  ℝcr 9814  0cc0 9815  1c1 9816  volcvol 23039  ∫1citg1 23190 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195 This theorem is referenced by:  itg11  23264  itg2const  23313  itg2addnclem  32631
 Copyright terms: Public domain W3C validator