HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan Structured version   Visualization version   GIF version

Theorem hvmulcan 27313
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvmulcan
StepHypRef Expression
1 df-ne 2782 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 biorf 419 . . . . 5 𝐴 = 0 → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
31, 2sylbi 206 . . . 4 (𝐴 ≠ 0 → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
43ad2antlr 759 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ) → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
543adant3 1074 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
6 hvsubeq0 27309 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0𝐵 = 𝐶))
763adant1 1072 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0𝐵 = 𝐶))
8 hvsubdistr1 27290 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
98eqeq1d 2612 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ ((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0))
10 hvsubcl 27258 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 𝐶) ∈ ℋ)
11 hvmul0or 27266 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 𝐶) ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
1210, 11sylan2 490 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
13123impb 1252 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
14 hvmulcl 27254 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
15143adant3 1074 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
16 hvmulcl 27254 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
17163adant2 1073 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
18 hvsubeq0 27309 . . . . 5 (((𝐴 · 𝐵) ∈ ℋ ∧ (𝐴 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
1915, 17, 18syl2anc 691 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
209, 13, 193bitr3d 297 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 𝐶) = 0) ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
21203adant1r 1311 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 𝐶) = 0) ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
225, 7, 213bitr3rd 298 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815  chil 27160   · csm 27162  0c0v 27165   cmv 27166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-hvsub 27212
This theorem is referenced by:  hvsubcan  27315  hvsubcan2  27316
  Copyright terms: Public domain W3C validator