Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd12i Structured version   Visualization version   GIF version

Theorem hvadd12i 27298
 Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvadd12i (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))

Proof of Theorem hvadd12i
StepHypRef Expression
1 hvass.1 . . . 4 𝐴 ∈ ℋ
2 hvass.2 . . . 4 𝐵 ∈ ℋ
31, 2hvcomi 27260 . . 3 (𝐴 + 𝐵) = (𝐵 + 𝐴)
43oveq1i 6559 . 2 ((𝐴 + 𝐵) + 𝐶) = ((𝐵 + 𝐴) + 𝐶)
5 hvass.3 . . 3 𝐶 ∈ ℋ
61, 2, 5hvassi 27294 . 2 ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
72, 1, 5hvassi 27294 . 2 ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶))
84, 6, 73eqtr3i 2640 1 (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  (class class class)co 6549   ℋchil 27160   +ℎ cva 27161 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-hvcom 27242  ax-hvass 27243 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552 This theorem is referenced by:  hvsubaddi  27307
 Copyright terms: Public domain W3C validator