Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > htpyid | Structured version Visualization version GIF version |
Description: A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
htpyid.1 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) |
htpyid.2 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
htpyid.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
htpyid | ⊢ (𝜑 → 𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyid.2 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | htpyid.4 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
3 | htpyid.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) | |
4 | iitopon 22490 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
6 | 1, 5 | cnmpt1st 21281 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
7 | 1, 5, 6, 2 | cnmpt21f 21285 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾)) |
8 | 3, 7 | syl5eqel 2692 | . 2 ⊢ (𝜑 → 𝐺 ∈ ((𝐽 ×t II) Cn 𝐾)) |
9 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) | |
10 | 0elunit 12161 | . . 3 ⊢ 0 ∈ (0[,]1) | |
11 | fveq2 6103 | . . . 4 ⊢ (𝑥 = 𝑠 → (𝐹‘𝑥) = (𝐹‘𝑠)) | |
12 | eqidd 2611 | . . . 4 ⊢ (𝑦 = 0 → (𝐹‘𝑠) = (𝐹‘𝑠)) | |
13 | fvex 6113 | . . . 4 ⊢ (𝐹‘𝑠) ∈ V | |
14 | 11, 12, 3, 13 | ovmpt2 6694 | . . 3 ⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝐺0) = (𝐹‘𝑠)) |
15 | 9, 10, 14 | sylancl 693 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐺0) = (𝐹‘𝑠)) |
16 | 1elunit 12162 | . . 3 ⊢ 1 ∈ (0[,]1) | |
17 | eqidd 2611 | . . . 4 ⊢ (𝑦 = 1 → (𝐹‘𝑠) = (𝐹‘𝑠)) | |
18 | 11, 17, 3, 13 | ovmpt2 6694 | . . 3 ⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝐺1) = (𝐹‘𝑠)) |
19 | 9, 16, 18 | sylancl 693 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐺1) = (𝐹‘𝑠)) |
20 | 1, 2, 2, 8, 15, 19 | ishtpyd 22582 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 0cc0 9815 1c1 9816 [,]cicc 12049 TopOnctopon 20518 Cn ccn 20838 ×t ctx 21173 IIcii 22486 Htpy chtpy 22574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-icc 12053 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-cn 20841 df-tx 21175 df-ii 22488 df-htpy 22577 |
This theorem is referenced by: phtpyid 22596 |
Copyright terms: Public domain | W3C validator |