Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycom Structured version   Visualization version   GIF version

Theorem htpycom 22583
 Description: Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpycom.6 𝑀 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦)))
htpycom.7 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpycom (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem htpycom
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishtpy.1 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 ishtpy.4 . 2 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
3 ishtpy.3 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 htpycom.6 . . 3 𝑀 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦)))
5 iitopon 22490 . . . . 5 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
71, 6cnmpt1st 21281 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
81, 6cnmpt2nd 21282 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II))
9 iirevcn 22537 . . . . . 6 (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)
109a1i 11 . . . . 5 (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II))
11 oveq2 6557 . . . . 5 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
121, 6, 8, 6, 10, 11cnmpt21 21284 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((𝐽 ×t II) Cn II))
131, 3, 2htpycn 22580 . . . . 5 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
14 htpycom.7 . . . . 5 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
1513, 14sseldd 3569 . . . 4 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
161, 6, 7, 12, 15cnmpt22f 21288 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) ∈ ((𝐽 ×t II) Cn 𝐾))
174, 16syl5eqel 2692 . 2 (𝜑𝑀 ∈ ((𝐽 ×t II) Cn 𝐾))
18 simpr 476 . . . 4 ((𝜑𝑡𝑋) → 𝑡𝑋)
19 0elunit 12161 . . . 4 0 ∈ (0[,]1)
20 oveq1 6556 . . . . 5 (𝑥 = 𝑡 → (𝑥𝐻(1 − 𝑦)) = (𝑡𝐻(1 − 𝑦)))
21 oveq2 6557 . . . . . . 7 (𝑦 = 0 → (1 − 𝑦) = (1 − 0))
22 1m0e1 11008 . . . . . . 7 (1 − 0) = 1
2321, 22syl6eq 2660 . . . . . 6 (𝑦 = 0 → (1 − 𝑦) = 1)
2423oveq2d 6565 . . . . 5 (𝑦 = 0 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻1))
25 ovex 6577 . . . . 5 (𝑡𝐻1) ∈ V
2620, 24, 4, 25ovmpt2 6694 . . . 4 ((𝑡𝑋 ∧ 0 ∈ (0[,]1)) → (𝑡𝑀0) = (𝑡𝐻1))
2718, 19, 26sylancl 693 . . 3 ((𝜑𝑡𝑋) → (𝑡𝑀0) = (𝑡𝐻1))
281, 3, 2, 14htpyi 22581 . . . 4 ((𝜑𝑡𝑋) → ((𝑡𝐻0) = (𝐹𝑡) ∧ (𝑡𝐻1) = (𝐺𝑡)))
2928simprd 478 . . 3 ((𝜑𝑡𝑋) → (𝑡𝐻1) = (𝐺𝑡))
3027, 29eqtrd 2644 . 2 ((𝜑𝑡𝑋) → (𝑡𝑀0) = (𝐺𝑡))
31 1elunit 12162 . . . 4 1 ∈ (0[,]1)
32 oveq2 6557 . . . . . . 7 (𝑦 = 1 → (1 − 𝑦) = (1 − 1))
33 1m1e0 10966 . . . . . . 7 (1 − 1) = 0
3432, 33syl6eq 2660 . . . . . 6 (𝑦 = 1 → (1 − 𝑦) = 0)
3534oveq2d 6565 . . . . 5 (𝑦 = 1 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻0))
36 ovex 6577 . . . . 5 (𝑡𝐻0) ∈ V
3720, 35, 4, 36ovmpt2 6694 . . . 4 ((𝑡𝑋 ∧ 1 ∈ (0[,]1)) → (𝑡𝑀1) = (𝑡𝐻0))
3818, 31, 37sylancl 693 . . 3 ((𝜑𝑡𝑋) → (𝑡𝑀1) = (𝑡𝐻0))
3928simpld 474 . . 3 ((𝜑𝑡𝑋) → (𝑡𝐻0) = (𝐹𝑡))
4038, 39eqtrd 2644 . 2 ((𝜑𝑡𝑋) → (𝑡𝑀1) = (𝐹𝑡))
411, 2, 3, 17, 30, 40ishtpyd 22582 1 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  0cc0 9815  1c1 9816   − cmin 10145  [,]cicc 12049  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  IIcii 22486   Htpy chtpy 22574 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-htpy 22577 This theorem is referenced by:  phtpycom  22595
 Copyright terms: Public domain W3C validator