Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbllem3 Structured version   Visualization version   GIF version

Theorem hspmbllem3 39518
 Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. This proof handles the non-trivial cases (nonzero dimension and finite outer measure) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbllem3.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbllem3.x (𝜑𝑋 ∈ Fin)
hspmbllem3.i (𝜑𝐾𝑋)
hspmbllem3.y (𝜑𝑌 ∈ ℝ)
hspmbllem3.a (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
hspmbllem3.s (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
hspmbllem3.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
hspmbllem3.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
hspmbllem3.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
hspmbllem3.10 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
hspmbllem3.11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
Assertion
Ref Expression
hspmbllem3 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
Distinct variable groups:   𝐴,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐴,𝑟,𝑎,,𝑖,𝑗   𝐵,𝑎,,𝑘,𝑙   𝐶,𝑎,,𝑖,𝑟   𝐷,𝑎,,𝑗,𝑘,𝑙,𝑥,𝑦   𝐷,𝑟   𝑖,𝐻,𝑗,𝑘   𝐾,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐿,𝑎,,𝑖,𝑟   𝑇,𝑎,,𝑗,𝑘,𝑙   𝑋,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝑋,𝑟   𝑌,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑟
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑖,𝑗,𝑟)   𝐶(𝑥,𝑦,𝑗,𝑘,𝑙)   𝐷(𝑖)   𝑇(𝑥,𝑦,𝑖,𝑟)   𝐻(𝑥,𝑦,,𝑟,𝑎,𝑙)   𝐾(𝑟)   𝐿(𝑥,𝑦,𝑗,𝑘,𝑙)   𝑌(𝑟)

Proof of Theorem hspmbllem3
Dummy variables 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbllem3.a . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
2 hspmbllem3.x . . . . 5 (𝜑𝑋 ∈ Fin)
3 inss1 3795 . . . . . 6 (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴
4 hspmbllem3.s . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
53, 4syl5ss 3579 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑𝑚 𝑋))
62, 5ovncl 39457 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
73a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
82, 7, 4ovnssle 39451 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
91, 6, 8ge0lere 38606 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
104ssdifssd 3710 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑𝑚 𝑋))
112, 10ovncl 39457 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
12 difssd 3700 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
132, 12, 4ovnssle 39451 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
141, 11, 13ge0lere 38606 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
15 rexadd 11937 . . 3 ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ ∧ ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
169, 14, 15syl2anc 691 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
172adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
18 hspmbllem3.i . . . . . . . 8 (𝜑𝐾𝑋)
19 ne0i 3880 . . . . . . . 8 (𝐾𝑋𝑋 ≠ ∅)
2018, 19syl 17 . . . . . . 7 (𝜑𝑋 ≠ ∅)
2120adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ≠ ∅)
224adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐴 ⊆ (ℝ ↑𝑚 𝑋))
23 simpr 476 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
24 hspmbllem3.c . . . . . 6 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
25 hspmbllem3.l . . . . . 6 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
26 hspmbllem3.d . . . . . 6 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
2717, 21, 22, 23, 24, 25, 26ovncvrrp 39454 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒))
28 hspmbllem3.h . . . . . . . 8 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
2917adantr 480 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑋 ∈ Fin)
3018ad2antrr 758 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐾𝑋)
31 hspmbllem3.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
3231ad2antrr 758 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑌 ∈ ℝ)
3323adantr 480 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑒 ∈ ℝ+)
3422adantr 480 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 ⊆ (ℝ ↑𝑚 𝑋))
35 fveq1 6102 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖𝑗) = (𝑗))
3635fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑖 = → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝑗)))
3736mpteq2dv 4673 . . . . . . . . . . . . . . . . 17 (𝑖 = → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝑗))))
3837fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑖 = → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))))
3938breq1d 4593 . . . . . . . . . . . . . . 15 (𝑖 = → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)))
4039cbvrabv 3172 . . . . . . . . . . . . . 14 {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}
4140mpteq2i 4669 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})
4241mpteq2i 4669 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
4326, 42eqtri 2632 . . . . . . . . . . 11 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
44 simpr 476 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑖 ∈ ((𝐷𝐴)‘𝑒))
45 hspmbllem3.10 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
46 hspmbllem3.11 . . . . . . . . . . 11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
4729, 34, 33, 24, 25, 43, 44, 45, 46ovncvr2 39501 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)))
4847simplld 787 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)))
4948simpld 474 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐵:ℕ⟶(ℝ ↑𝑚 𝑋))
5048simprd 478 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋))
5147simplrd 789 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
5247simprd 478 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒))
531adantr 480 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
5423rpred 11748 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ)
5553, 54rexaddd 11939 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5655adantr 480 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5752, 56breqtrd 4609 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
581ad2antrr 758 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
599ad2antrr 758 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
6014ad2antrr 758 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
61 eqid 2610 . . . . . . . 8 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
62 eqid 2610 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
63 eqid 2610 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
6428, 29, 30, 32, 33, 49, 50, 51, 57, 58, 59, 60, 61, 62, 63hspmbllem2 39517 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6564ex 449 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6665exlimdv 1848 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6727, 66mpd 15 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6867ralrimiva 2949 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
699, 14readdcld 9948 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ)
70 alrple 11911 . . . 4 (((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ ∧ ((voln*‘𝑋)‘𝐴) ∈ ℝ) → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7169, 1, 70syl2anc 691 . . 3 (𝜑 → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7268, 71mpbird 246 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
7316, 72eqbrtrd 4605 1 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125  ∪ ciun 4455   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058   ↑𝑚 cmap 7744  Xcixp 7794  Fincfn 7841  ℝcr 9814  0cc0 9815   + caddc 9818  -∞cmnf 9951   ≤ cle 9954  ℕcn 10897  ℝ+crp 11708   +𝑒 cxad 11820  (,)cioo 12046  [,)cico 12048  ∏cprod 14474  volcvol 23039  Σ^csumge0 39255  voln*covoln 39426 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-sumge0 39256  df-ovoln 39427 This theorem is referenced by:  hspmbl  39519
 Copyright terms: Public domain W3C validator