Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hsmexlem9 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 9137. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem7.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
Ref | Expression |
---|---|
hsmexlem9 | ⊢ (𝑎 ∈ ω → (𝐻‘𝑎) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0suc 6982 | . 2 ⊢ (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏)) | |
2 | fveq2 6103 | . . . 4 ⊢ (𝑎 = ∅ → (𝐻‘𝑎) = (𝐻‘∅)) | |
3 | hsmexlem7.h | . . . . . 6 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
4 | 3 | hsmexlem7 9128 | . . . . 5 ⊢ (𝐻‘∅) = (har‘𝒫 𝑋) |
5 | harcl 8349 | . . . . 5 ⊢ (har‘𝒫 𝑋) ∈ On | |
6 | 4, 5 | eqeltri 2684 | . . . 4 ⊢ (𝐻‘∅) ∈ On |
7 | 2, 6 | syl6eqel 2696 | . . 3 ⊢ (𝑎 = ∅ → (𝐻‘𝑎) ∈ On) |
8 | 3 | hsmexlem8 9129 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐻‘suc 𝑏) = (har‘𝒫 (𝑋 × (𝐻‘𝑏)))) |
9 | harcl 8349 | . . . . . 6 ⊢ (har‘𝒫 (𝑋 × (𝐻‘𝑏))) ∈ On | |
10 | 8, 9 | syl6eqel 2696 | . . . . 5 ⊢ (𝑏 ∈ ω → (𝐻‘suc 𝑏) ∈ On) |
11 | fveq2 6103 | . . . . . 6 ⊢ (𝑎 = suc 𝑏 → (𝐻‘𝑎) = (𝐻‘suc 𝑏)) | |
12 | 11 | eleq1d 2672 | . . . . 5 ⊢ (𝑎 = suc 𝑏 → ((𝐻‘𝑎) ∈ On ↔ (𝐻‘suc 𝑏) ∈ On)) |
13 | 10, 12 | syl5ibrcom 236 | . . . 4 ⊢ (𝑏 ∈ ω → (𝑎 = suc 𝑏 → (𝐻‘𝑎) ∈ On)) |
14 | 13 | rexlimiv 3009 | . . 3 ⊢ (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → (𝐻‘𝑎) ∈ On) |
15 | 7, 14 | jaoi 393 | . 2 ⊢ ((𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏) → (𝐻‘𝑎) ∈ On) |
16 | 1, 15 | syl 17 | 1 ⊢ (𝑎 ∈ ω → (𝐻‘𝑎) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 Vcvv 3173 ∅c0 3874 𝒫 cpw 4108 ↦ cmpt 4643 × cxp 5036 ↾ cres 5040 Oncon0 5640 suc csuc 5642 ‘cfv 5804 ωcom 6957 reccrdg 7392 harchar 8344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-en 7842 df-dom 7843 df-oi 8298 df-har 8346 |
This theorem is referenced by: hsmexlem4 9134 hsmexlem5 9135 |
Copyright terms: Public domain | W3C validator |