Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > homval | Structured version Visualization version GIF version |
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
homval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hommval 27979 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | |
2 | 1 | fveq1d 6105 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))‘𝐵)) |
3 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑇‘𝑥) = (𝑇‘𝐵)) | |
4 | 3 | oveq2d 6565 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
5 | eqid 2610 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) | |
6 | ovex 6577 | . . . 4 ⊢ (𝐴 ·ℎ (𝑇‘𝐵)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6191 | . . 3 ⊢ (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
8 | 2, 7 | sylan9eq 2664 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
9 | 8 | 3impa 1251 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ℋchil 27160 ·ℎ csm 27162 ·op chot 27180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-hilex 27240 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-map 7746 df-homul 27974 |
This theorem is referenced by: homcl 27989 honegsubi 28039 homulid2 28043 homco1 28044 homulass 28045 hoadddi 28046 hoadddir 28047 nmopnegi 28208 homco2 28220 lnopmi 28243 hmopm 28264 nmophmi 28274 adjmul 28335 leopmuli 28376 leopnmid 28381 |
Copyright terms: Public domain | W3C validator |