 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofval Structured version   Visualization version   GIF version

Theorem hofval 16715
 Description: Value of the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from (oppCat‘𝐶) × 𝐶 to SetCat, whose object part is the hom-function Hom, and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hofval.b 𝐵 = (Base‘𝐶)
hofval.h 𝐻 = (Hom ‘𝐶)
hofval.o · = (comp‘𝐶)
Assertion
Ref Expression
hofval (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Distinct variable groups:   𝑓,𝑔,,𝑥,𝑦,𝐵   𝜑,𝑓,𝑔,,𝑥,𝑦   𝐶,𝑓,𝑔,,𝑥,𝑦   𝑓,𝐻,𝑔,,𝑥,𝑦   · ,𝑓,𝑔,,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem hofval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . 2 𝑀 = (HomF𝐶)
2 df-hof 16713 . . . 4 HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩)
32a1i 11 . . 3 (𝜑 → HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩))
4 simpr 476 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
54fveq2d 6107 . . . 4 ((𝜑𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
6 fvex 6113 . . . . . 6 (Base‘𝑐) ∈ V
76a1i 11 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) ∈ V)
84fveq2d 6107 . . . . . 6 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = (Base‘𝐶))
9 hofval.b . . . . . 6 𝐵 = (Base‘𝐶)
108, 9syl6eqr 2662 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = 𝐵)
11 simpr 476 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1211sqxpeqd 5065 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
13 simplr 788 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
1413fveq2d 6107 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
15 hofval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
1614, 15syl6eqr 2662 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
1716oveqd 6566 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((1st𝑦)(Hom ‘𝑐)(1st𝑥)) = ((1st𝑦)𝐻(1st𝑥)))
1816oveqd 6566 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) = ((2nd𝑥)𝐻(2nd𝑦)))
1916fveq1d 6105 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑥) = (𝐻𝑥))
2013fveq2d 6107 . . . . . . . . . . 11 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = (comp‘𝐶))
21 hofval.o . . . . . . . . . . 11 · = (comp‘𝐶)
2220, 21syl6eqr 2662 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = · )
2322oveqd 6566 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦)) = (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)))
2422oveqd 6566 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥(comp‘𝑐)(2nd𝑦)) = (𝑥 · (2nd𝑦)))
2524oveqd 6566 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑔(𝑥(comp‘𝑐)(2nd𝑦))) = (𝑔(𝑥 · (2nd𝑦))))
26 eqidd 2611 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓)
2723, 25, 26oveq123d 6570 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓) = ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))
2819, 27mpteq12dv 4663 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)) = ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))
2917, 18, 28mpt2eq123dv 6615 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))
3012, 12, 29mpt2eq123dv 6615 . . . . 5 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
317, 10, 30csbied2 3527 . . . 4 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
325, 31opeq12d 4348 . . 3 ((𝜑𝑐 = 𝐶) → ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
33 hofval.c . . 3 (𝜑𝐶 ∈ Cat)
34 opex 4859 . . . 4 ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V
3534a1i 11 . . 3 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V)
363, 32, 33, 35fvmptd 6197 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
371, 36syl5eq 2656 1 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ⦋csb 3499  ⟨cop 4131   ↦ cmpt 4643   × cxp 5036  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Homf chomf 16150  HomFchof 16711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-hof 16713 This theorem is referenced by:  hof1fval  16716  hof2fval  16718  hofcl  16722  hofpropd  16730
 Copyright terms: Public domain W3C validator