MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeores Structured version   Visualization version   GIF version

Theorem hmeores 21384
Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
hmeores.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeores ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))))

Proof of Theorem hmeores
StepHypRef Expression
1 hmeocn 21373 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
21adantr 480 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 hmeores.1 . . . . 5 𝑋 = 𝐽
43cnrest 20899 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾))
52, 4sylancom 698 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾))
6 cntop2 20855 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
72, 6syl 17 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐾 ∈ Top)
8 eqid 2610 . . . . . 6 𝐾 = 𝐾
98toptopon 20548 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
107, 9sylib 207 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
11 df-ima 5051 . . . . . 6 (𝐹𝑌) = ran (𝐹𝑌)
1211eqimss2i 3623 . . . . 5 ran (𝐹𝑌) ⊆ (𝐹𝑌)
1312a1i 11 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) ⊆ (𝐹𝑌))
14 imassrn 5396 . . . . 5 (𝐹𝑌) ⊆ ran 𝐹
153, 8cnf 20860 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
162, 15syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹:𝑋 𝐾)
17 frn 5966 . . . . . 6 (𝐹:𝑋 𝐾 → ran 𝐹 𝐾)
1816, 17syl 17 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran 𝐹 𝐾)
1914, 18syl5ss 3579 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ⊆ 𝐾)
20 cnrest2 20900 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝐹𝑌) ⊆ (𝐹𝑌) ∧ (𝐹𝑌) ⊆ 𝐾) → ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾) ↔ (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌)))))
2110, 13, 19, 20syl3anc 1318 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾) ↔ (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌)))))
225, 21mpbid 221 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌))))
23 hmeocnvcn 21374 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2423adantr 480 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹 ∈ (𝐾 Cn 𝐽))
258, 3cnf 20860 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐽) → 𝐹: 𝐾𝑋)
26 ffun 5961 . . . . 5 (𝐹: 𝐾𝑋 → Fun 𝐹)
27 funcnvres 5881 . . . . 5 (Fun 𝐹(𝐹𝑌) = (𝐹 ↾ (𝐹𝑌)))
2824, 25, 26, 274syl 19 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) = (𝐹 ↾ (𝐹𝑌)))
298cnrest 20899 . . . . 5 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ (𝐹𝑌) ⊆ 𝐾) → (𝐹 ↾ (𝐹𝑌)) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
3024, 19, 29syl2anc 691 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹 ↾ (𝐹𝑌)) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
3128, 30eqeltrd 2688 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
32 cntop1 20854 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
332, 32syl 17 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐽 ∈ Top)
343toptopon 20548 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3533, 34sylib 207 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
36 dfdm4 5238 . . . . . 6 dom (𝐹𝑌) = ran (𝐹𝑌)
37 fssres 5983 . . . . . . . 8 ((𝐹:𝑋 𝐾𝑌𝑋) → (𝐹𝑌):𝑌 𝐾)
3816, 37sylancom 698 . . . . . . 7 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌):𝑌 𝐾)
39 fdm 5964 . . . . . . 7 ((𝐹𝑌):𝑌 𝐾 → dom (𝐹𝑌) = 𝑌)
4038, 39syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → dom (𝐹𝑌) = 𝑌)
4136, 40syl5eqr 2658 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) = 𝑌)
42 eqimss 3620 . . . . 5 (ran (𝐹𝑌) = 𝑌 → ran (𝐹𝑌) ⊆ 𝑌)
4341, 42syl 17 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) ⊆ 𝑌)
44 simpr 476 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝑌𝑋)
45 cnrest2 20900 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran (𝐹𝑌) ⊆ 𝑌𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽) ↔ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4635, 43, 44, 45syl3anc 1318 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽) ↔ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4731, 46mpbid 221 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌)))
48 ishmeo 21372 . 2 ((𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))) ↔ ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌))) ∧ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4922, 47, 48sylanbrc 695 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540   cuni 4372  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  t crest 15904  Topctop 20517  TopOnctopon 20518   Cn ccn 20838  Homeochmeo 21366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-hmeo 21368
This theorem is referenced by:  cvmsss2  30510
  Copyright terms: Public domain W3C validator