MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnv Structured version   Visualization version   GIF version

Theorem hmeocnv 21375
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocnv (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))

Proof of Theorem hmeocnv
StepHypRef Expression
1 hmeocnvcn 21374 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2 hmeocn 21373 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 eqid 2610 . . . . . 6 𝐽 = 𝐽
4 eqid 2610 . . . . . 6 𝐾 = 𝐾
53, 4cnf 20860 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
6 frel 5963 . . . . 5 (𝐹: 𝐽 𝐾 → Rel 𝐹)
72, 5, 63syl 18 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → Rel 𝐹)
8 dfrel2 5502 . . . 4 (Rel 𝐹𝐹 = 𝐹)
97, 8sylib 207 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 = 𝐹)
109, 2eqeltrd 2688 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
11 ishmeo 21372 . 2 (𝐹 ∈ (𝐾Homeo𝐽) ↔ (𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))
121, 10, 11sylanbrc 695 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977   cuni 4372  ccnv 5037  Rel wrel 5043  wf 5800  (class class class)co 6549   Cn ccn 20838  Homeochmeo 21366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-cn 20841  df-hmeo 21368
This theorem is referenced by:  hmeocnvb  21387  hmphsym  21395  xpstopnlem2  21424
  Copyright terms: Public domain W3C validator