HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmdmadj Structured version   Visualization version   GIF version

Theorem hmdmadj 28183
Description: Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmdmadj (𝑇 ∈ HrmOp → 𝑇 ∈ dom adj)

Proof of Theorem hmdmadj
StepHypRef Expression
1 hmopf 28117 . . . 4 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hon0 28036 . . . 4 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)
31, 2syl 17 . . 3 (𝑇 ∈ HrmOp → ¬ 𝑇 = ∅)
4 hmopadj 28182 . . . 4 (𝑇 ∈ HrmOp → (adj𝑇) = 𝑇)
54eqeq1d 2612 . . 3 (𝑇 ∈ HrmOp → ((adj𝑇) = ∅ ↔ 𝑇 = ∅))
63, 5mtbird 314 . 2 (𝑇 ∈ HrmOp → ¬ (adj𝑇) = ∅)
7 ndmfv 6128 . 2 𝑇 ∈ dom adj → (adj𝑇) = ∅)
86, 7nsyl2 141 1 (𝑇 ∈ HrmOp → 𝑇 ∈ dom adj)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wcel 1977  c0 3874  dom cdm 5038  wf 5800  cfv 5804  chil 27160  HrmOpcho 27191  adjcado 27196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212  df-hmop 28087  df-adjh 28092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator