MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlobn Structured version   Visualization version   GIF version

Theorem hlobn 27128
Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlobn (𝑈 ∈ CHilOLD𝑈 ∈ CBan)

Proof of Theorem hlobn
StepHypRef Expression
1 ishlo 27127 . 2 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
21simplbi 475 1 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  CPreHilOLDccphlo 27051  CBanccbn 27102  CHilOLDchlo 27125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-hlo 27126
This theorem is referenced by:  hlrel  27130  hlnv  27131  hlcmet  27134  htthlem  27158
  Copyright terms: Public domain W3C validator