HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimcaui Structured version   Visualization version   GIF version

Theorem hlimcaui 27477
Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimcaui (𝐹𝑣 𝐴𝐹 ∈ Cauchy)

Proof of Theorem hlimcaui
StepHypRef Expression
1 eqid 2610 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2 eqid 2610 . . . . . . . 8 (IndMet‘⟨⟨ + , · ⟩, norm⟩) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2610 . . . . . . . 8 (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) = (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
41, 2, 3hhlm 27440 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
5 resss 5342 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
64, 5eqsstri 3598 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
7 dmss 5245 . . . . . 6 ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
86, 7ax-mp 5 . . . . 5 dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
91, 2hhxmet 27416 . . . . . 6 (IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ)
103lmcau 22919 . . . . . 6 ((IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
119, 10ax-mp 5 . . . . 5 dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
128, 11sstri 3577 . . . 4 dom ⇝𝑣 ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
134dmeqi 5247 . . . . . 6 dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
14 dmres 5339 . . . . . 6 dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)) = (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
1513, 14eqtri 2632 . . . . 5 dom ⇝𝑣 = (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
16 inss1 3795 . . . . 5 (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))) ⊆ ( ℋ ↑𝑚 ℕ)
1715, 16eqsstri 3598 . . . 4 dom ⇝𝑣 ⊆ ( ℋ ↑𝑚 ℕ)
1812, 17ssini 3798 . . 3 dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑𝑚 ℕ))
191, 2hhcau 27439 . . 3 Cauchy = ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑𝑚 ℕ))
2018, 19sseqtr4i 3601 . 2 dom ⇝𝑣 ⊆ Cauchy
21 relres 5346 . . . 4 Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
224releqi 5125 . . . 4 (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)))
2321, 22mpbir 220 . . 3 Rel ⇝𝑣
2423releldmi 5283 . 2 (𝐹𝑣 𝐴𝐹 ∈ dom ⇝𝑣 )
2520, 24sseldi 3566 1 (𝐹𝑣 𝐴𝐹 ∈ Cauchy)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  cin 3539  wss 3540  cop 4131   class class class wbr 4583  dom cdm 5038  cres 5040  Rel wrel 5043  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cn 10897  ∞Metcxmt 19552  MetOpencmopn 19557  𝑡clm 20840  Caucca 22859  IndMetcims 26830  chil 27160   + cva 27161   · csm 27162  normcno 27164  Cauchyccau 27167  𝑣 chli 27168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-lm 20843  df-haus 20929  df-cau 22862  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-hnorm 27209  df-hvsub 27212  df-hlim 27213  df-hcau 27214
This theorem is referenced by:  isch3  27482  chscllem2  27881
  Copyright terms: Public domain W3C validator