Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhildrng Structured version   Visualization version   GIF version

Theorem hlhildrng 36262
Description: The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhillvec.h 𝐻 = (LHyp‘𝐾)
hlhillvec.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhillvec.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhildrng.r 𝑅 = (Scalar‘𝑈)
Assertion
Ref Expression
hlhildrng (𝜑𝑅 ∈ DivRing)

Proof of Theorem hlhildrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhillvec.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 hlhillvec.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2610 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
42, 3erngdv 35299 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
51, 4syl 17 . 2 (𝜑 → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
6 eqidd 2611 . . 3 (𝜑 → (Base‘((EDRing‘𝐾)‘𝑊)) = (Base‘((EDRing‘𝐾)‘𝑊)))
7 hlhillvec.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
8 hlhildrng.r . . . 4 𝑅 = (Scalar‘𝑈)
9 eqid 2610 . . . 4 (Base‘((EDRing‘𝐾)‘𝑊)) = (Base‘((EDRing‘𝐾)‘𝑊))
102, 3, 7, 8, 1, 9hlhilsbase 36249 . . 3 (𝜑 → (Base‘((EDRing‘𝐾)‘𝑊)) = (Base‘𝑅))
11 eqid 2610 . . . . 5 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
122, 3, 7, 8, 1, 11hlhilsplus 36250 . . . 4 (𝜑 → (+g‘((EDRing‘𝐾)‘𝑊)) = (+g𝑅))
1312oveqdr 6573 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘((EDRing‘𝐾)‘𝑊)) ∧ 𝑦 ∈ (Base‘((EDRing‘𝐾)‘𝑊)))) → (𝑥(+g‘((EDRing‘𝐾)‘𝑊))𝑦) = (𝑥(+g𝑅)𝑦))
14 eqid 2610 . . . . 5 (.r‘((EDRing‘𝐾)‘𝑊)) = (.r‘((EDRing‘𝐾)‘𝑊))
152, 3, 7, 8, 1, 14hlhilsmul 36251 . . . 4 (𝜑 → (.r‘((EDRing‘𝐾)‘𝑊)) = (.r𝑅))
1615oveqdr 6573 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘((EDRing‘𝐾)‘𝑊)) ∧ 𝑦 ∈ (Base‘((EDRing‘𝐾)‘𝑊)))) → (𝑥(.r‘((EDRing‘𝐾)‘𝑊))𝑦) = (𝑥(.r𝑅)𝑦))
176, 10, 13, 16drngpropd 18597 . 2 (𝜑 → (((EDRing‘𝐾)‘𝑊) ∈ DivRing ↔ 𝑅 ∈ DivRing))
185, 17mpbid 221 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771  DivRingcdr 18570  HLchlt 33655  LHypclh 34288  EDRingcedring 35059  HLHilchlh 36242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-edring 35063  df-hlhil 36243
This theorem is referenced by:  hlhilsrnglem  36263
  Copyright terms: Public domain W3C validator